Your browser doesn't support javascript.
loading
Covalent Post-Synthetic Modification of Metal-Organic Cages: Concepts and Recent Progress.
Luo, Dong; Zhu, Xiao-Wei; Zhou, Xiao-Ping; Li, Dan.
Afiliación
  • Luo D; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China.
  • Zhu XW; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China.
  • Zhou XP; Guangdong Rare Earth Photofunctional Materials Engineering Technology Research Center, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, P.R. China.
  • Li D; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China.
Chemistry ; 30(24): e202400020, 2024 Apr 25.
Article en En | MEDLINE | ID: mdl-38293757
ABSTRACT
Metal-organic cages (MOCs) are supramolecular coordination complexes that have internal cavities for hosting guest molecules and exhibiting various properties. However, the functions of MOCs are limited by the choice of the building blocks. Post-synthetic modification (PSM) is a technique that can introduce new functional groups and replace existing ones on the MOCs without changing their geometry. Among many PSM methods, covalent PSM is a promising approach to modify MOCs with tailored structures and functions. Covalent PSM can be applied to either the internal cavity or the external surface of the MOCs, depending on the functionality expected to be customized. However, there are still some challenges and limitations in the field of covalent PSM of MOCs, such as the balance between the stability of MOCs and the harshness of organic reactions involved in covalent PSMs. This concept article introduces the organic reaction types involved in covalent PSM of MOCs, their new applications after modification, and summarizes and provides an outlook of this research field.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article