Your browser doesn't support javascript.
loading
Mathematical model of oxygen, nutrient, and drug transport in tuberculosis granulomas.
Datta, Meenal; Kennedy, McCarthy; Siri, Saeed; Via, Laura E; Baish, James W; Xu, Lei; Dartois, Véronique; Barry, Clifton E; Jain, Rakesh K.
Afiliación
  • Datta M; Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
  • Kennedy M; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America.
  • Siri S; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America.
  • Via LE; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America.
  • Baish JW; Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America.
  • Xu L; Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America.
  • Dartois V; Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
  • Barry CE; Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, New Jersey, United States of America.
  • Jain RK; Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS Comput Biol ; 20(2): e1011847, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38335224
ABSTRACT
Physiological abnormalities in pulmonary granulomas-pathological hallmarks of tuberculosis (TB)-compromise the transport of oxygen, nutrients, and drugs. In prior studies, we demonstrated mathematically and experimentally that hypoxia and necrosis emerge in the granuloma microenvironment (GME) as a direct result of limited oxygen availability. Building on our initial model of avascular oxygen diffusion, here we explore additional aspects of oxygen transport, including the roles of granuloma vasculature, transcapillary transport, plasma dilution, and interstitial convection, followed by cellular metabolism. Approximate analytical solutions are provided for oxygen and glucose concentration, interstitial fluid velocity, interstitial fluid pressure, and the thickness of the convective zone. These predictions are in agreement with prior experimental results from rabbit TB granulomas and from rat carcinoma models, which share similar transport limitations. Additional drug delivery predictions for anti-TB-agents (rifampicin and clofazimine) strikingly match recent spatially-resolved experimental results from a mouse model of TB. Finally, an approach to improve molecular transport in granulomas by modulating interstitial hydraulic conductivity is tested in silico.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tuberculosis / Mycobacterium tuberculosis Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tuberculosis / Mycobacterium tuberculosis Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos