Sequential CRISPR screening reveals partial NatB inhibition as a strategy to mitigate alpha-synuclein levels in human neurons.
Sci Adv
; 10(6): eadj4767, 2024 Feb 09.
Article
en En
| MEDLINE
| ID: mdl-38335281
ABSTRACT
Alpha-synuclein (αSyn) protein levels correlate with the risk and severity of Parkinson's disease and related neurodegenerative diseases. Lowering αSyn is being actively investigated as a therapeutic modality. Here, we systematically map the regulatory network that controls endogenous αSyn using sequential CRISPR-knockout and -interference screens in an αSyn gene (SNCA)-tagged cell line and induced pluripotent stem cell-derived neurons (iNeurons). We uncover αSyn modifiers at multiple regulatory layers, with amino-terminal acetyltransferase B (NatB) enzymes being the most potent endogenous αSyn modifiers in both cell lines. Amino-terminal acetylation protects the cytosolic αSyn from rapid degradation by the proteasome in a Ube2w-dependent manner. Moreover, we show that pharmacological inhibition of methionyl-aminopeptidase 2, a regulator of NatB complex formation, attenuates endogenous αSyn in iNeurons carrying SNCA triplication. Together, our study reveals several gene networks that control endogenous αSyn, identifies mechanisms mediating the degradation of nonacetylated αSyn, and illustrates potential therapeutic pathways for decreasing αSyn levels in synucleinopathies.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Enfermedad de Parkinson
/
Alfa-Sinucleína
/
Acetiltransferasa B N-Terminal
Tipo de estudio:
Diagnostic_studies
/
Screening_studies
Límite:
Humans
Idioma:
En
Revista:
Sci Adv
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos