Your browser doesn't support javascript.
loading
Di-(2-ethylhexyl) phthalate (DEHP) contamination suppressed soil microbial biomass carbon and mitigated CO2 emissions against the background of alfalfa from different soils.
Shah, Jawad Ali; Ullah, Saif; Chen, Deyun; Wu, Jianping.
Afiliación
  • Shah JA; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Key Laboratory
  • Ullah S; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Key Laboratory
  • Chen D; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Key Laboratory
  • Wu J; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Key Laboratory
Ecotoxicol Environ Saf ; 272: 116073, 2024 Mar 01.
Article en En | MEDLINE | ID: mdl-38335580
ABSTRACT
Plastic mulching and organic amendments are prevalent agricultural practices worldwide. Plastic mulching has long been suspected as a significant source of DEHP contamination in terrestrial ecosystems. However, effects of DEHP contamination on greenhouse gas emissions and microbial biomass carbon (MBC) remain unclear. Here, a microcosm experiment was set up to assess the impact of DEHP exposure on MBC and carbon dioxide (CO2) emission in two different soils (acidic and alkaline) with the inclusion of alfalfa straw. The treatment includes (i) control with no amendment (T1); (ii) alfalfa straw addition (20 g kg-1) (T2); (iii) DEHP (10 mg kg-1) + alfalfa straw (T3); and (iv) DEHP (100 mg kg-1) + alfalfa straw (T4). Against the background of alfalfa inclusion, DEHP exposure led to a potential reduction in cumulative CO2 emissions by 16.35 % and 6.91 % in alkaline soil and 12.27 % and 13.65 % in acidic soil for T3 and T4, respectively. The addition of DEHP triggered CO2 emissions and manifested a detrimental negative priming effect in both soil types. In both soils, average CO2 emission fluxes were highest for the T2 treatment. The MBC fluctuated at around 80 mg kg-1 for the control group, alfalfa straw alone (T2) treatment considerably enhanced MBC contents, whereas DEHP contamination in T3 and T4 treatments suppressed the stimulatory effect of alfalfa on MBC in both alkaline and acidic soils. Furthermore, a positive relationship was observed between soil CO2 emissions and MBC in both soils. Overall, these findings highlight the toxic impact of DEHP on MBC and its role in mitigating CO2 emissions in diverse soils. DEHP exposure counters the CO2 emissions induced by alfalfa straw. In addition, the inhibitory effect of DEHP on CO2 fluxes in alkaline soil is less pronounced than in acidic soil. Therefore, further cutting-edge research is crucial since DEHP contamination poses serious ecological threats to agroecosystems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácidos Ftálicos / Suelo / Dietilhexil Ftalato Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácidos Ftálicos / Suelo / Dietilhexil Ftalato Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article