Your browser doesn't support javascript.
loading
Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi.
Cheng, Erjian; Yan, Limin; Shi, Xianbiao; Lou, Rui; Fedorov, Alexander; Behnami, Mahdi; Yuan, Jian; Yang, Pengtao; Wang, Bosen; Cheng, Jin-Guang; Xu, Yuanji; Xu, Yang; Xia, Wei; Pavlovskii, Nikolai; Peets, Darren C; Zhao, Weiwei; Wan, Yimin; Burkhardt, Ulrich; Guo, Yanfeng; Li, Shiyan; Felser, Claudia; Yang, Wenge; Büchner, Bernd.
Afiliación
  • Cheng E; Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany. erjian_cheng@163.com.
  • Yan L; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany. erjian_cheng@163.com.
  • Shi X; Center for High Pressure Science and Technology Advanced Research, 201203, Shanghai, China.
  • Lou R; State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, 130012, Changchun, China.
  • Fedorov A; State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, 150001, Harbin, China.
  • Behnami M; Flexible Printed Electronics Technology Center, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Yuan J; Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany. lourui09@gmail.com.
  • Yang P; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany. lourui09@gmail.com.
  • Wang B; Joint Laboratory "Functional Quantum Materials" at BESSY II, 12489, Berlin, Germany. lourui09@gmail.com.
  • Cheng JG; Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany.
  • Xu Y; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany.
  • Xu Y; Joint Laboratory "Functional Quantum Materials" at BESSY II, 12489, Berlin, Germany.
  • Xia W; Leibniz Institute for Solid State and Materials Research (IFW-Dresden), 01069, Dresden, Germany.
  • Pavlovskii N; School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China.
  • Peets DC; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  • Zhao W; School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Wan Y; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  • Burkhardt U; School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Guo Y; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  • Li S; School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Felser C; Institute for Applied Physics, University of Science and Technology Beijing, 100083, Beijing, China.
  • Yang W; Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
  • Büchner B; School of Physical Science and Technology, ShanghaiTech University, 200031, Shanghai, China.
Nat Commun ; 15(1): 1467, 2024 Feb 17.
Article en En | MEDLINE | ID: mdl-38368411
ABSTRACT
The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania