Your browser doesn't support javascript.
loading
Neural correlates of semantic-driven syntactic parsing in sentence comprehension.
Zhang, Yun; Taft, Marcus; Tang, Jiaman; Li, Le.
Afiliación
  • Zhang Y; Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China.
  • Taft M; Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China; School of Psychology, UNSW Sydney, Australia.
  • Tang J; Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China.
  • Li L; Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China. Electronic address: lile@blcu.edu.cn.
Neuroimage ; 289: 120543, 2024 Apr 01.
Article en En | MEDLINE | ID: mdl-38369168
ABSTRACT
For sentence comprehension, information carried by semantic relations between constituents must be combined with other information to decode the constituent structure of a sentence, due to atypical and noisy situations of language use. Neural correlates of decoding sentence structure by semantic information have remained largely unexplored. In this functional MRI study, we examine the neural basis of semantic-driven syntactic parsing during sentence reading and compare it with that of other types of syntactic parsing driven by word order and case marking. Chinese transitive sentences of various structures were investigated, differing in word order, case making, and agent-patient semantic relations (i.e., same vs. different in animacy). For the non-canonical unmarked sentences without usable case marking, a semantic-driven effect triggered by agent-patient ambiguity was found in the left inferior frontal gyrus opercularis (IFGoper) and left inferior parietal lobule, with the activity not being modulated by naturalness factors of the sentences. The comparison between each type of non-canonical sentences with canonical sentences revealed that the non-canonicity effect engaged the left posterior frontal and temporal regions, in line with previous studies. No extra neural activity was found responsive to case marking within the non-canonical sentences. A word order effect across all types of sentences was also found in the left IFGoper, suggesting a common neural substrate between different types of parsing. The semantic-driven effect was also observed for the non-canonical marked sentences but not for the canonical sentences, suggesting that semantic information is used in decoding sentence structure in addition to case marking. The current findings illustrate the neural correlates of syntactic parsing with semantics, and provide neural evidence of how semantics facilitates syntax together with other information.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Semántica / Comprensión Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Semántica / Comprensión Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article