Your browser doesn't support javascript.
loading
Enhanced sporulation of B. licheniformis BF-002 through automatic co-feeding of carbon and nitrogen sources.
Ding, Jian; Liu, Qingyuan; Hou, Wenbiao; Cai, Jun; Wang, Bo; Lu, Cheng.
Afiliación
  • Ding J; The key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.
  • Liu Q; Bayannur Science and Technology Achievement Transformation Center, Bayannur, China.
  • Hou W; The key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.
  • Cai J; The key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.
  • Wang B; The key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.
  • Lu C; The key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.
Biotechnol Bioeng ; 121(5): 1642-1658, 2024 May.
Article en En | MEDLINE | ID: mdl-38381097
ABSTRACT
Bacillus licheniformis formulations are effective for environmental remediation, gut microbiota modulation, and soil improvement. An adequate spore quantity is crucial for the activity of B. licheniformis formulations. This study investigated the synergistic effects of carbon/nitrogen source consumption and concentration on B. licheniformis BF-002 cultivation, with the aim of developing an automatic co-feeding strategy to enhance spore production. Initial glucose (10 g/L) and amino nitrogen (1.5 g/L) concentrations promote cell growth, followed by reduced glucose (2.0 g/L) and amino nitrogen (0.5 g/L) concentrations for sustained spore generation. The spore quantity reached 2.59 × 1010 CFU/mL. An automatic co-feeding strategy was developed and implemented in 5 and 50 L cultivations, resulting in spore quantities of 2.35 × 1010 and 2.86 × 1010 CFU/mL, respectively, improving by 6.81% and 30.00% compared to that with a fixed glucose concentration (10.0 g/L). The culture broth obtained at both the 5 and 50 L scales was spray-dried, resulting in bacterial powder with cell viability rates of 85.94% and 82.68%, respectively. Even after exposure to harsh conditions involving high temperature and humidity, cell viability remained at 72.80% and 69.89%, respectively. Employing the automatic co-feeding strategy increased the transcription levels of the spore formation-related genes spo0A, spoIIGA, bofA, and spoIV by 7.42%, 8.46%, 8.87%, and 9.79%, respectively. The proposed strategy effectively promoted Bacillus growth and spore formation, thereby enhancing the quality of B. licheniformis formulations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacillus / Bacillus licheniformis Idioma: En Revista: Biotechnol Bioeng Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacillus / Bacillus licheniformis Idioma: En Revista: Biotechnol Bioeng Año: 2024 Tipo del documento: Article País de afiliación: China