Your browser doesn't support javascript.
loading
Synergy between 3D-extruded electroconductive scaffolds and electrical stimulation to improve bone tissue engineering strategies.
Silva, João C; Marcelino, Pedro; Meneses, João; Barbosa, Frederico; Moura, Carla S; Marques, Ana C; Cabral, Joaquim M S; Pascoal-Faria, Paula; Alves, Nuno; Morgado, Jorge; Ferreira, Frederico Castelo; Garrudo, Fábio F F.
Afiliación
  • Silva JC; iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal. joao.f.da.silva@tecnico.ulisboa.pt.
  • Marcelino P; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal.
  • Meneses J; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal.
  • Barbosa F; iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal. joao.f.da.silva@tecnico.ulisboa.pt.
  • Moura CS; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal.
  • Marques AC; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal.
  • Cabral JMS; CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal.
  • Pascoal-Faria P; CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal.
  • Alves N; iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal. joao.f.da.silva@tecnico.ulisboa.pt.
  • Morgado J; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal.
  • Ferreira FC; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal.
  • Garrudo FFF; CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal.
J Mater Chem B ; 12(11): 2771-2794, 2024 Mar 13.
Article en En | MEDLINE | ID: mdl-38384239
ABSTRACT
In this work, we propose a simple, reliable, and versatile strategy to create 3D electroconductive scaffolds suitable for bone tissue engineering (TE) applications with electrical stimulation (ES). The proposed scaffolds are made of 3D-extruded poly(ε-caprolactone) (PCL), subjected to alkaline treatment, and of poly(3,4-ethylenedioxythiophene)poly(styrene sulfonate) (PEDOTPSS), anchored to PCL with one of two different crosslinkers (3-glycidyloxypropyl)trimethoxysilane (GOPS) and divinyl sulfone (DVS). Both cross-linkers allowed the formation of a homogenous and continuous coating of PEDOTPSS to PCL. We show that these PEDOTPSS coatings are electroconductive (11.3-20.1 S cm-1), stable (up to 21 days in saline solution), and allow the immobilization of gelatin (Gel) to further improve bioactivity. In vitro mineralization of the corresponding 3D conductive scaffolds was greatly enhanced (GOPS(NaOH)-Gel - 3.1 fold, DVS(NaOH)-Gel - 2.0 fold) and cell colonization and proliferation were the highest for the DVS(NaOH)-Gel scaffold. In silico modelling of ES application in DVS(NaOH)-Gel scaffolds indicates that the electrical field distribution is homogeneous, which reduces the probability of formation of faradaic products. Osteogenic differentiation of human bone marrow derived mesenchymal stem/stromal cells (hBM-MSCs) was performed under ES. Importantly, our results clearly demonstrated a synergistic effect of scaffold electroconductivity and ES on the enhancement of MSC osteogenic differentiation, particularly on cell-secreted calcium deposition and the upregulation of osteogenic gene markers such as COL I, OC and CACNA1C. These scaffolds hold promise for future clinical applications, including manufacturing of personalized bone TE grafts for transplantation with enhanced maturation/functionality or bioelectronic devices.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Andamios del Tejido Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2024 Tipo del documento: Article País de afiliación: Portugal

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Andamios del Tejido Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2024 Tipo del documento: Article País de afiliación: Portugal