Your browser doesn't support javascript.
loading
Characterization of sucrose nonfermenting-1-related protein kinase 2 (SnRK2) gene family in Haynaldia villosa demonstrated SnRK2.9-V enhances drought and salt stress tolerance of common wheat.
Liu, Jia; Wei, Luyang; Wu, Yirong; Wang, Zongkuan; Wang, Haiyan; Xiao, Jin; Wang, Xiue; Sun, Li.
Afiliación
  • Liu J; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
  • Wei L; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, 321000, China.
  • Wu Y; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
  • Wang Z; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
  • Wang H; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
  • Xiao J; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
  • Wang X; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
  • Sun L; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China. xiuew@njau.edu.cn.
BMC Genomics ; 25(1): 209, 2024 Feb 26.
Article en En | MEDLINE | ID: mdl-38408894
ABSTRACT

BACKGROUND:

The sucrose nonfermenting-1-related protein kinase 2 (SnRK2) plays a crucial role in responses to diverse biotic/abiotic stresses. Currently, there are reports on these genes in Haynaldia villosa, a diploid wild relative of wheat.

RESULTS:

To understand the evolution of SnRK2-V family genes and their roles in various stress conditions, we performed genome-wide identification of the SnRK2-V gene family in H. villosa. Ten SnRK2-V genes were identified and characterized for their structures, functions and spatial expressions. Analysis of gene exon/intron structure further revealed the presence of evolutionary paths and replication events of SnRK2-V gene family in the H. villosa. In addition, the features of gene structure, the chromosomal location, subcellular localization of the gene family were investigated and the phylogenetic relationship were determined using computational approaches. Analysis of cis-regulatory elements of SnRK2-V gene members revealed their close correlation with different phytohormone signals. The expression profiling revealed that ten SnRK2-V genes expressed at least one tissue (leave, stem, root, or grain), or in response to at least one of the biotic (stripe rust or powdery mildew) or abiotic (drought or salt) stresses. Moreover, SnRK2.9-V was up-regulated in H. villosa under the drought and salt stress and overexpressing of SnRK2.9-V in wheat enhanced drought and salt tolerances via enhancing the genes expression of antioxidant enzymes, revealing a potential value of SnRK2.9-V in wheat improvement for salt tolerance.

CONCLUSION:

Our present study provides a basic genome-wide overview of SnRK2-V genes in H. villosa and demonstrates the potential use of SnRK2.9-V in enhancing the drought and salt tolerances in common wheat.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Triticum / Tolerancia a la Sal Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Triticum / Tolerancia a la Sal Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2024 Tipo del documento: Article País de afiliación: China