Your browser doesn't support javascript.
loading
Strengthen interactions among fungal and protistan taxa by increasing root biomass and soil nutrient in the topsoil than in the soil-rock mixing layer.
Xiao, Dan; He, Xunyang; Zhang, Wei; Chen, Meifeng; Hu, Peilei; Wu, Hanqing; Liao, Xionghui; Wang, Kelin.
Afiliación
  • Xiao D; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Tech
  • He X; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Tech
  • Zhang W; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Tech
  • Chen M; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
  • Hu P; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Tech
  • Wu H; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Tech
  • Liao X; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Tech
  • Wang K; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Tech
J Environ Manage ; 355: 120468, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38430883
ABSTRACT
Soil depth plays a crucial role in shaping the interactions between soil microbes and nutrient availability. However, there is limited understanding of how bacterial, fungal, and protistan communities respond to different soil depths, particularly in the unique geological context and soil properties of karst regions. Organic matter, total nitrogen, and phosphorus, ammonium, nitrate, and plant root biomass, as well as bacterial and fungal abundances, bacterial and protistan diversity were higher in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, soil pH was higher in the 20-40 cm and soil-rock mixing layers than that in the 0-20 cm soil layer. The soil exchange of calcium, nitrate, and root biomass were identified as the primary factors regulating microbial assemblages across the depth transect. Moreover, co-occurrence network analysis revealed a greater degree of connectivity between protistan taxa and fungal taxa in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, the number of association links between protist-bacteria and bacteria-bacteria was higher in the soil-rock mixing layers compared to the 0-20 cm soil layer. Actinobacteria, Ascomycota, and unclassified protistan taxa were identified as keystones, displaying the highest number of connections with other microbial taxa. Collectively, these results suggested that the increased plant root biomass, coupled with sufficient available nutrient inputs in the upper 0-20 cm soil layer, facilitates strong interactions among fungal and protistan taxa, which play crucial roles in the topsoil. However, as nutrients become less available with increasing depth, competition among bacterial taxa and the predation between bacterial and protistan taxa intensify. Therefore, these findings indicate the interactions among keystone taxa at different soil depths has the potential to generate ecological implications during vegetation restoration in fragile ecosystems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Ecosistema Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Ecosistema Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article