Your browser doesn't support javascript.
loading
Cadmium induced defense enhance the invasive potential of Wedelia trilobata under herbivore infestation.
Nawaz, Mohsin; Sun, Jianfan; Bo, Yanwen; He, Feng; Shabbir, Samina; Hassan, Muhammad Umair; Pan, Linxuan; Ahmad, Parvaiz; Sonne, Christian; Du, Daolin.
Afiliación
  • Nawaz M; School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Sun J; School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou
  • Bo Y; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
  • He F; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Shabbir S; Department of Chemistry, The Women University Multan, Pakistan.
  • Hassan MU; Research Center on Ecological Sciences Jiangxi Agricultural University, Nanchang 330045, China.
  • Pan L; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Ahmad P; Department of Botany, GDC Pulwama, Kashmir, Jammu and Kashmir 192301, India.
  • Sonne C; Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
  • Du D; Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
J Hazard Mater ; 469: 133931, 2024 May 05.
Article en En | MEDLINE | ID: mdl-38447369
ABSTRACT
Cadmium (Cd) pollution is on the rise due to rapid urbanization, which emphasize the potential adverse effects on plant biodiversity and human health. Wedelia as a dominant invasive species, is tested for its tolerance to Cd-toxicity and herbivore infestation. We investigate defense mechanism system of invasive Wedelia trilobata and its native congener Wedelia chinensis against the Cd-pollution and Spodoptera litura infestation. We found that Cd-toxicity significantly increase hydrogen peroxide (H2O2), Malondialdehyde (MDA) and hydroxyl ions (O2•) in W. chinensis 20.61%, 4.78% and 15.68% in leave and 27.44%, 25.52% and 30.88% in root, respectively. The photosynthetic pigments (Chla, Chla and Caro) and chlorophyll florescence (Fo and Fv/Fm) declined by (60.23%, 58.48% and 51.96%), and (73.29% and 55.75%) respectively in W. chinensis and (44.76%, 44.24% and 44.30%), and (54.66% and 45.36%) in W. trilobata under Cd treatment and S. litura. Invasive W. trilobata had higher enzymatic antioxidant SOD 126.9/71.64%, POD 97.24/94.92%, CAT 53.99/25.62% and APX 82.79/50.19%, and nonenzymatic antioxidant ASA 10.47/16.87%, DHA 15.07/27.88%, GSH 15.91/10.03% and GSSG 13.56/17.93% activity in leaf/root, respectively. Overall, W. trilobata accumulate higher Cd content 55.41%, 50.61% and 13.95% in root, shoot and leaf tissues respectively, than its native congener W. chinensis. While, nutrient profile of W. chinensis reveals less uptake of Fe, Cu and Zn than W. trilobata. W. trilobata showed efficient alleviation of oxidative damage through upregulating the genes related to key defense such as SOD, POD, CAT, APX, GR, PROL, FLV, ABA and JAZ, and metal transporter in leaves, shoot and root tissues, respectively. Conclusively, W. trilobata efficiently employed Cd-triggered defense for successful invasion, even under S. litura infestation, in Cd-contaminated soil.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Wedelia Límite: Humans Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Wedelia Límite: Humans Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China