Your browser doesn't support javascript.
loading
Enhancing the Thermoelectric Properties of Conjugated Polymers by Suppressing Dopant-Induced Disorder.
Wang, Suhao; Zhu, Wenjin; Jacobs, Ian E; Wood, William A; Wang, Zichen; Manikandan, Suraj; Andreasen, Jens Wenzel; Un, Hio-Ieng; Ursel, Sarah; Peralta, Sébastien; Guan, Shaoliang; Grivel, Jean-Claude; Longuemart, Stéphane; Sirringhaus, Henning.
Afiliación
  • Wang S; Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Zhu W; Unité de Dynamique et Structure des Matériaux Moléculaires, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, Dunkerque, 59140, France.
  • Jacobs IE; Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Wood WA; Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Wang Z; Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Manikandan S; Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Andreasen JW; Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
  • Un HI; Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
  • Ursel S; Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Peralta S; Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Guan S; Laboratoire de Physicochimie des Polymères et des Interfaces, CY Cergy Paris Université, 5 Mail Gay Lussac, Neuville-sur-Oise, 95000, France.
  • Grivel JC; Maxwell Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
  • Longuemart S; Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
  • Sirringhaus H; Unité de Dynamique et Structure des Matériaux Moléculaires, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, Dunkerque, 59140, France.
Adv Mater ; 36(25): e2314062, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38558210
ABSTRACT
Doping is a crucial strategy to enhance the performance of various organic electronic devices. However, in many cases, the random distribution of dopants in conjugated polymers leads to the disruption of the polymer microstructure, severely constraining the achievable performance of electronic devices. Here, it is shown that by ion-exchange doping polythiophene-based P[(3HT)1-x-stat-(T)x] (x = 0 (P1), 0.12 (P2), 0.24 (P3), and 0.36 (P4)), remarkably high electrical conductivity of >400 S cm-1 and power factor of >16 µW m-1 K-2 are achieved for the random copolymer P3, ranking it among highest ever reported for unaligned P3HT-based films, significantly higher than that of P1 (<40 S cm-1, <4 µW m-1 K-2). Although both polymers exhibit comparable field-effect transistor hole mobilities of ≈0.1 cm2 V-1 s-1 in the pristine state, after doping, Hall effect measurements indicate that P3 exhibits a large Hall mobility up to 1.2 cm2 V-1 s-1, significantly outperforming that of P1 (0.06 cm2 V-1 s-1). GIWAXS measurement determines that the in-plane π-π stacking distance of doped P3 is 3.44 Å, distinctly shorter than that of doped P1 (3.68 Å). These findings contribute to resolving the long-standing dopant-induced-disorder issues in P3HT and serve as an example for achieving fast charge transport in highly doped polymers for efficient electronics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article