Your browser doesn't support javascript.
loading
JAML promotes the antitumor role of tumor-resident CD8+ T cells by facilitating their innate-like function in human lung cancer.
Hao, Zhixing; Xin, Zhongwei; Chen, Yongyuan; Shao, Zheyu; Lin, Wei; Wu, Wenxuan; Lin, Mingjie; Liu, Qinyuan; Chen, Di; Wu, Dang; Wu, Pin.
Afiliación
  • Hao Z; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medici
  • Xin Z; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medici
  • Chen Y; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medici
  • Shao Z; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medici
  • Lin W; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
  • Wu W; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School o
  • Lin M; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medici
  • Liu Q; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medici
  • Chen D; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medi
  • Wu D; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medi
  • Wu P; Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medici
Cancer Lett ; 590: 216839, 2024 May 28.
Article en En | MEDLINE | ID: mdl-38570084
ABSTRACT
Tissue-resident memory CD8+T cells (CD8+TRMs) are thought to play a crucial role in cancer immunosurveillance. However, the characteristics of CD8+TRMs in the tumor microenvironment (TME) of human non-small cell lung cancer (NSCLC) remain unclear. Here, we report that CD8+TRMs accumulate explicitly and exhibit a unique gene expression profile in the TME of NSCLC. Interestingly, these tumor-associated CD8+TRMs uniquely exhibit an innate-like phenotype. Importantly, we found that junction adhesion molecule-like (JAML) provides an alternative costimulatory signal to activate tumor-associated CD8+TRMs via combination with cancer cell-derived CXADR (CXADR Ig-like cell adhesion molecule). Furthermore, we demonstrated that activating JAML could promote the expression of TLR1/2 on CD8+TRMs, inhibit tumor progression and prolong the survival of tumor-bearing mice. Finally, we found that higher CD8+TRMs and JAML expression in the TME could predict favorable clinical outcomes in NSCLC patients. Our study reveals an intrinsic bias of CD8+TRMs for receiving the tumor-derived costimulatory signal in the TME, which sustains their innate-like function and antitumor role. These findings will shed more light on the biology of CD8+TRMs and aid in the development of potential targeted treatment strategies for NSCLC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Linfocitos T CD8-positivos / Microambiente Tumoral / Neoplasias Pulmonares Límite: Animals / Female / Humans Idioma: En Revista: Cancer Lett Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Linfocitos T CD8-positivos / Microambiente Tumoral / Neoplasias Pulmonares Límite: Animals / Female / Humans Idioma: En Revista: Cancer Lett Año: 2024 Tipo del documento: Article