Your browser doesn't support javascript.
loading
Rice transcription factor OsWRKY37 positively regulates flowering time and grain fertility under copper deficiency.
Ji, Chenchen; Li, Haixing; Ding, Jingli; Yu, Lu; Jiang, Cuncang; Wang, Chuang; Wang, Sheliang; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei.
Afiliación
  • Ji C; Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China.
  • Li H; Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Ding J; Department of Research and Development, Kenfeng Changjiang Seed Technology Co., Ltd., 430070 Wuhan, China.
  • Yu L; Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China.
  • Jiang C; Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Wang C; Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China.
  • Wang S; Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Ding G; Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China.
  • Shi L; Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Xu F; Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China.
  • Cai H; Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
Plant Physiol ; 195(3): 2195-2212, 2024 Jun 28.
Article en En | MEDLINE | ID: mdl-38589996
ABSTRACT
Efficient uptake, translocation, and distribution of Cu to rice (Oryza sativa) spikelets is crucial for flowering and yield production. However, the regulatory factors involved in this process remain unidentified. In this study, we isolated a WRKY transcription factor gene induced by Cu deficiency, OsWRKY37, and characterized its regulatory role in Cu uptake and transport in rice. OsWRKY37 was highly expressed in rice roots, nodes, leaf vascular bundles, and anthers. Overexpression of OsWRKY37 promoted the uptake and root-to-shoot translocation of Cu in rice under -Cu condition but not under +Cu condition. While mutation of OsWRKY37 significantly decreased Cu concentrations in the stamen, the root-to-shoot translocation and distribution ratio in brown rice affected pollen development, delayed flowering time, decreased fertility, and reduced grain yield under -Cu condition. yeast one-hybrid, transient co-expression and EMSAs, together with in situ RT-PCR and RT-qPCR analysis, showed that OsWRKY37 could directly bind to the upstream promoter region of OsCOPT6 (copper transporter) and OsYSL16 (yellow stripe-like protein) and positively activate their expression levels. Analyses of oscopt6 mutants further validated its important role in Cu uptake in rice. Our study demonstrated that OsWRKY37 acts as a positive regulator involved in the uptake, root-to-shoot translocation, and distribution of Cu through activating the expression of OsCOPT6 and OsYSL16, which is important for pollen development, flowering, fertility, and grain yield in rice under Cu deficient conditions. Our results provide a genetic strategy for improving rice yield under Cu deficient condition.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Oryza / Factores de Transcripción / Regulación de la Expresión Génica de las Plantas / Cobre / Flores Idioma: En Revista: Plant Physiol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Oryza / Factores de Transcripción / Regulación de la Expresión Génica de las Plantas / Cobre / Flores Idioma: En Revista: Plant Physiol Año: 2024 Tipo del documento: Article País de afiliación: China