Constructing a Novel Moderately Modulus "Rigid-Flexible" Structure with Synergistic Reinforcement on the Carbon Fiber Surface to Enhance the Mechanical Properties of Carbon Fiber/Epoxy Composites at Elevated Temperatures.
ACS Appl Mater Interfaces
; 16(17): 22747-22758, 2024 May 01.
Article
en En
| MEDLINE
| ID: mdl-38635355
ABSTRACT
To improve the mechanical performance of carbon fiber (CF)/epoxy composites in high-temperature environments, a moderately modulus gradient modulus interlayer was constructed at the interface phase region of composites. This involved the design of a "rigid-flexible" synergistic reinforcement structure, incorporating rigid nanoparticle GO@CNTs and a flexible polymer polynaphthyl ether nitrile ketone onto the CF surface. Notably, at 180 °C, compared to commercial CF composites, the CF-GO@CNTs-PPENK composites displayed a remarkable improvement in their mechanical characteristics (interfacial shear, interlaminar shear, flexural strength, and modulus), achieving enhancements of 173.0, 91.5, 225.7, and 376.4%, respectively. The principal reason for this the moderately modulus interface phase composed of GO@CNTs-PPENK (where GO and CNTs predominantly consist of carbon atoms with sp2-hybridized orbitals, forming highly stable C-C structures, while PPENK possesses a "twisted non-coplanar" structure), which exhibited resistance to deformation at high temperatures. Moreover, it greatly improved the mechanical interlocking, wettability, and chemical compatibility between CF and the epoxy. It also played a crucial role in balancing and buffering the modulus disparity. The interface failure behavior and reinforcement mechanisms of the CF composites were analyzed. Furthermore, validation of the presence of a moderately modulus gradient interlayer at the interface phase region of CF-GO@CNTs-PPENK composites was performed by using atomic force microscopy. This study has established a theoretical foundation for the development of high-performance CF composites for use in high-temperature fields.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China