Your browser doesn't support javascript.
loading
The role of neuromodulation in the management of drug-resistant epilepsy.
Salama, HusamEddin; Salama, Ahmed; Oscher, Logan; Jallo, George I; Shimony, Nir.
Afiliación
  • Salama H; Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine.
  • Salama A; Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine.
  • Oscher L; Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA.
  • Jallo GI; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA. gjallo1@jhmi.edu.
  • Shimony N; Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA. gjallo1@jhmi.edu.
Neurol Sci ; 45(9): 4243-4268, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38642321
ABSTRACT
Drug-resistant epilepsy (DRE) poses significant challenges in terms of effective management and seizure control. Neuromodulation techniques have emerged as promising solutions for individuals who are unresponsive to pharmacological treatments, especially for those who are not good surgical candidates for surgical resection or laser interstitial therapy (LiTT). Currently, there are three neuromodulation techniques that are FDA-approved for the management of DRE. These include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Device selection, optimal time, and DBS and RNS target selection can also be challenging. In general, the number and localizability of the epileptic foci, alongside the comorbidities manifested by the patients, substantially influence the selection process. In the past, the general axiom was that DBS and VNS can be used for generalized and localized focal seizures, while RNS is typically reserved for patients with one or two highly localized epileptic foci, especially if they are in eloquent areas of the brain. Nowadays, with the advance in our understanding of thalamic involvement in DRE, RNS is also very effective for general non-focal epilepsy. In this review, we will discuss the underlying mechanisms of action, patient selection criteria, and the evidence supporting the use of each technique. Additionally, we explore emerging technologies and novel approaches in neuromodulation, such as closed-loop systems. Moreover, we examine the challenges and limitations associated with neuromodulation therapies, including adverse effects, complications, and the need for further long-term studies. This comprehensive review aims to provide valuable insights on present and future use of neuromodulation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estimulación Encefálica Profunda / Estimulación del Nervio Vago / Epilepsia Refractaria Límite: Humans Idioma: En Revista: Neurol Sci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estimulación Encefálica Profunda / Estimulación del Nervio Vago / Epilepsia Refractaria Límite: Humans Idioma: En Revista: Neurol Sci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article