Your browser doesn't support javascript.
loading
Thalamic epileptic spikes disrupt sleep spindles in patients with epileptic encephalopathy.
Wodeyar, Anirudh; Chinappen, Dhinakaran; Mylonas, Dimitris; Baxter, Bryan; Manoach, Dara S; Eden, Uri T; Kramer, Mark A; Chu, Catherine J.
Afiliación
  • Wodeyar A; Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA.
  • Chinappen D; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
  • Mylonas D; Harvard Medical School, Boston, MA 02115, USA.
  • Baxter B; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
  • Manoach DS; Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA.
  • Eden UT; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA.
  • Kramer MA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
  • Chu CJ; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA.
Brain ; 147(8): 2803-2816, 2024 Aug 01.
Article en En | MEDLINE | ID: mdl-38650060
ABSTRACT
In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-REM sleep (EE-SWAS), a sleep stage dominated by sleep spindles, which are brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep-activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, P ≈ 0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (P ≈ 0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 s after each thalamic spike (P < 0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tálamo / Electroencefalografía Límite: Adolescent / Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Brain Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tálamo / Electroencefalografía Límite: Adolescent / Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Brain Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos