Your browser doesn't support javascript.
loading
The structural basis for light harvesting in organisms producing phycobiliproteins.
Bryant, Donald A; Gisriel, Christopher J.
Afiliación
  • Bryant DA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802  USA.
  • Gisriel CJ; Department of Chemistry, Yale University, New Haven CT 06520  USA.
Plant Cell ; 2024 Apr 23.
Article en En | MEDLINE | ID: mdl-38652697
ABSTRACT
Cyanobacteria, red algae, and cryptophytes produce two classes of proteins for light-harvesting water-soluble phycobiliproteins and membrane-intrinsic proteins that bind chlorophylls and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored phycobiliproteins and linker (assembly) proteins. To date, six structural classes of phycobilisomes have been described hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of phycobiliproteins have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped phycobilisomes by cryogenic electron microscopy. Phycobilisomes range in size from about 4.6 to 18 MDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous chlorophyll-binding proteins that can form antenna complexes with Photosystem I and/or Photosystem II. Red and cryptophyte algae also produce chlorophyll-binding proteins associated with Photosystem I but which belong to the chlorophyll a/b-binding (CAB) protein superfamily and which are unrelated to the chlorophyll-binding proteins (CBP) of cyanobacteria. This review describes recent progress in structure determination for phycobilisomes and the chlorophyll proteins of cyanobacteria, red algae, and cryptophytan algae.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article