Your browser doesn't support javascript.
loading
Improved Mechanical Strength without Sacrificing Li-Ion Transport in Polymer Electrolytes.
Bamford, James T; Jones, Seamus D; Schauser, Nicole S; Pedretti, Benjamin J; Gordon, Leo W; Lynd, Nathaniel A; Clément, Raphaële J; Segalman, Rachel A.
Afiliación
  • Bamford JT; Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
  • Jones SD; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
  • Schauser NS; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
  • Pedretti BJ; Materials Engineering Department, California Polytechnic State University, San Luis Obispo, California 93106, United States.
  • Gordon LW; Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
  • Lynd NA; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
  • Clément RJ; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States.
  • Segalman RA; Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States.
ACS Macro Lett ; 13(5): 638-643, 2024 May 21.
Article en En | MEDLINE | ID: mdl-38709178
ABSTRACT
Next-generation batteries demand solid polymer electrolytes (SPEs) with rapid ion transport and robust mechanical properties. However, many SPEs with liquid-like Li+ transport mechanisms suffer a fundamental trade-off between conductivity and strength. Dynamic polymer networks can improve bulk mechanics with minimal impact to segmental relaxation or ionic conductivity. This study demonstrates a system where a single polymer-bound ligand simultaneously dissociates Li+ and forms long-lived Ni2+ networks. The polymer comprises an ethylene oxide backbone and imidazole (Im) ligands, blended with Li+ and Ni2+ salts. Ni2+-Im dynamic cross-links result in the formation of a rubbery plateau resulting in, consequently, storage modulus improvement by a factor of 133× with the introduction of Ni2+ at rNi = 0.08, from 0.014 to 1.907 MPa. Even with Ni2+ loading, the high Li+ conductivity of 3.7 × 10-6 S/cm is retained at 90 °C. This work demonstrates that decoupling of ion transport and bulk mechanics can be readily achieved by the addition of multivalent metal cations to polymers with chelating ligands.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Macro Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Macro Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos