Your browser doesn't support javascript.
loading
Ultralow Catalytic Loading for Optimised Electrocatalytic Performance of AuPt Nanoparticles to Produce Hydrogen and Ammonia.
Bezerra, Leticia S; Brasseur, Paul; Sullivan-Allsop, Sam; Cai, Rongsheng; da Silva, Kaline N; Wang, Shiqi; Singh, Harishchandra; Yadav, Ashok K; Santos, Hugo L S; Chundak, Mykhailo; Abdelsalam, Ibrahim; Heczko, Vilma J; Sitta, Elton; Ritala, Mikko; Huo, Wenyi; Slater, Thomas J A; Haigh, Sarah J; Camargo, Pedro H C.
Afiliación
  • Bezerra LS; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Brasseur P; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Sullivan-Allsop S; Department of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom.
  • Cai R; Department of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom.
  • da Silva KN; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Wang S; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Singh H; Nano and Molecular Systems Research Unit, University of Oulu, Oulu, FIN-90014, Finland.
  • Yadav AK; Synchrotron SOLEIL Beamline SIRIUS, Saint-Aubin, F-91192, Gif sur Yvette, France.
  • Santos HLS; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Chundak M; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Abdelsalam I; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Heczko VJ; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Sitta E; Department of Chemistry, Federal University of Sao Carlos, Rod. Washington Luis, km 235, Sao Carlos, 13565-905, Brazil.
  • Ritala M; Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014, Helsinki, Finland.
  • Huo W; College of Mechanical and Electrical Engineering, Nanjing Forestry University., Nanjing, 210037, P. R. China.
  • Slater TJA; NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, 05-400, Poland.
  • Haigh SJ; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom.
  • Camargo PHC; Department of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom.
Angew Chem Int Ed Engl ; 63(29): e202405459, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-38711309
ABSTRACT
The hydrogen evolution and nitrite reduction reactions are key to producing green hydrogen and ammonia. Antenna-reactor nanoparticles hold promise to improve the performances of these transformations under visible-light excitation, by combining plasmonic and catalytic materials. However, current materials involve compromising either on the catalytic activity or the plasmonic enhancement and also lack control of reaction selectivity. Here, we demonstrate that ultralow loadings and non-uniform surface segregation of the catalytic component optimize catalytic activity and selectivity under visible-light irradiation. Taking Pt-Au as an example we find that fine-tuning the Pt content produces a 6-fold increase in the hydrogen evolution compared to commercial Pt/C as well as a 6.5-fold increase in the nitrite reduction and a 2.5-fold increase in the selectivity for producing ammonia under visible light excitation relative to dark conditions. Density functional theory suggests that the catalytic reactions are accelerated by the intimate contact between nanoscale Pt-rich and Au-rich regions at the surface, which facilitates the formation of electron-rich hot-carrier puddles associated with the Pt-based active sites. The results provide exciting opportunities to design new materials with improved photocatalytic performance for sustainable energy applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Finlandia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Finlandia