Your browser doesn't support javascript.
loading
Reinforcement feedback impairs locomotor adaptation and retention.
Hill, Christopher M; Sebastião, Emerson; Barzi, Leo; Wilson, Matt; Wood, Tyler.
Afiliación
  • Hill CM; Department of Kinesiology and Physical Education, Northern Illinois University, Dekalb, IL, United States.
  • Sebastião E; School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States.
  • Barzi L; Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, United States.
  • Wilson M; Department of Kinesiology and Physical Education, Northern Illinois University, Dekalb, IL, United States.
  • Wood T; School of Allied Health and Communicative Disorders, Northern Illinois University, Dekalb, IL, United States.
Front Behav Neurosci ; 18: 1388495, 2024.
Article en En | MEDLINE | ID: mdl-38720784
ABSTRACT

Introduction:

Locomotor adaptation is a motor learning process used to alter spatiotemporal elements of walking that are driven by prediction errors, a discrepancy between the expected and actual outcomes of our actions. Sensory and reward prediction errors are two different types of prediction errors that can facilitate locomotor adaptation. Reward and punishment feedback generate reward prediction errors but have demonstrated mixed effects on upper extremity motor learning, with punishment enhancing adaptation, and reward supporting motor memory. However, an in-depth behavioral analysis of these distinct forms of feedback is sparse in locomotor tasks.

Methods:

For this study, three groups of healthy young adults were divided into distinct feedback groups [Supervised, Reward, Punishment] and performed a novel locomotor adaptation task where each participant adapted their knee flexion to 30 degrees greater than baseline, guided by visual supervised or reinforcement feedback (Adaptation). Participants were then asked to recall the new walking pattern without feedback (Retention) and after a washout period with feedback restored (Savings).

Results:

We found that all groups learned the adaptation task with external feedback. However, contrary to our initial hypothesis, enhancing sensory feedback with a visual representation of the knee angle (Supervised) accelerated the rate of learning and short-term retention in comparison to monetary reinforcement feedback. Reward and Punishment displayed similar rates of adaptation, short-term retention, and savings, suggesting both types of reinforcement feedback work similarly in locomotor adaptation. Moreover, all feedback enhanced the aftereffect of locomotor task indicating changes to implicit learning.

Discussion:

These results demonstrate the multi-faceted nature of reinforcement feedback on locomotor adaptation and demonstrate the possible different neural substrates that underly reward and sensory prediction errors during different motor tasks.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Behav Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Behav Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos