Your browser doesn't support javascript.
loading
Creating Atomically Iridium-Doped PdOx Nanoparticles for Efficient and Durable Methane Abatement.
Wang, Yingjie; Xu, Guangyan; Sun, Yanwei; Shi, Wei; Shi, Xiaoyan; Yu, Yunbo; He, Hong.
Afiliación
  • Wang Y; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
  • Xu G; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
  • Sun Y; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
  • Shi W; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Shi X; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
  • Yu Y; University of Chinese Academy of Sciences, Beijing 100049, China.
  • He H; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Environ Sci Technol ; 58(23): 10357-10367, 2024 Jun 11.
Article en En | MEDLINE | ID: mdl-38728016
ABSTRACT
The urgent environmental concern of methane abatement, attributed to its high global warming potential, necessitates the development of methane oxidation catalysts (MOC) with enhanced low-temperature activity and durability. Herein, an iridium-doped PdOx nanoparticle supported on silicalite-1 zeolite (PdIr/S-1) catalyst was synthesized and applied for methane catalytic combustion. Comprehensive characterizations confirmed the atomically dispersed nature of iridium on the surface of PdOx nanoparticles, creating an Ir4f-O-Pdcus microstructure. The atomically doped Ir transferred more electrons to adjacent oxygen atoms, modifying the electronic structure of PdOx and thus enhancing the redox ability of the PdIr/S-1 catalysts. This electronic modulation facilitated methane adsorption on the Pd site of Ir4f-O-Pdcus, reducing the energy barrier for C-H bond cleavage and thereby increasing the reaction rate for methane oxidation. Consequently, the optimized PdIr0.1/S-1 showed outstanding low-temperature activity for methane combustion (T50 = 276 °C) after aging and maintained long-term stability over 100 h under simulated exhaust conditions. Remarkably, the novel PdIr0.1/S-1 catalyst demonstrated significantly enhanced activity even after undergoing harsh hydrothermal aging at 750 °C for 16 h, significantly outperforming the conventional Pd/Al2O3 catalyst. This work provides valuable insights for designing efficient and durable MOC catalysts, addressing the critical issue of methane abatement.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxidación-Reducción / Nanopartículas / Iridio / Metano Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxidación-Reducción / Nanopartículas / Iridio / Metano Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article País de afiliación: China