Your browser doesn't support javascript.
loading
Modelling and assessment of glucose-lactate kinetics in youth with overweight, obesity and metabolic dysfunction-associated steatotic liver disease: A pilot study.
Bonet, Jacopo; Fox, Delaney; Nelson, Rafaela; Nelson, Michael B; Nelson, Loretta; Fernandez, Cristina; Barbieri, Emiliano; Dalla Man, Chiara; Santoro, Nicola.
Afiliación
  • Bonet J; Department of Information Engineering, Padua, Italy.
  • Fox D; Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.
  • Nelson R; Department of Pediatrics, Kansas University Medical Center, Kansas City, Kansas, USA.
  • Nelson MB; Department of Pediatrics, Kansas University Medical Center, Kansas City, Kansas, USA.
  • Nelson L; Department of Pediatrics, Kansas University Medical Center, Kansas City, Kansas, USA.
  • Fernandez C; Department of Pediatrics, Kansas University Medical Center, Kansas City, Kansas, USA.
  • Barbieri E; Center for Children's Healthy Lifestyles & Nutrition, Kansas City, Kansas, USA.
  • Dalla Man C; University of Missouri-Kansas City School of Medicine, Kansas City, Kansas, USA.
  • Santoro N; Division of Weight Management, Children's Mercy, Kansas City, Missouri, USA.
Diabetes Obes Metab ; 26(8): 3207-3212, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38742538
ABSTRACT

AIM:

In this study, we investigated glucose and lactate kinetics during a 75 g oral glucose tolerance test (OGTT) in 23 overweight and obese adolescents and assessed putative differences among participants with and without metabolic dysfunction-associated steatotic liver disease (MASLD).

METHODS:

We enrolled 23 young people (six girls) with obesity [body mass index 33 (29-37)]. Glucose-lactate kinetics parameters (disposal glucose insulin sensitivity, SID; fraction of glucose converted into lactate, fr; fractional lactate clearance rate, kL) and lactate production rate (LPR) were estimated using the oral glucose-lactate minimal model. MASLD presence was assessed using the proton density fat fraction. We analysed glucose, lactate and LPR time to peak, peak values and area under the curve and evaluated differences using the Wilcoxon test. MASLD and no-MASLD participants were compared using the Mann-Whitney test. Correlations between parameters were assessed using the Spearman correlation coefficient (ρ). We also tested the performance of two (4 or 3 h OGTT) protocols in estimating oral glucose-lactate minimal model and LPR parameters.

RESULTS:

Glucose peaks 30 min earlier than lactate (p = .0019). This pattern was present in the no-MASLD group (p < .001). LPR peaks 30 min later in the MASLD group (p = .02). LPR and kL were higher in MASLD, suggesting higher glycolysis and lactate utilization. SID and fr correlate significantly (ρ = -0.55, p = .008). SID and fr were also correlated with the body mass index, (ρ = -0.45, p = .04; and ρ = 0.45; p = .03). The protocol duration did not influence the estimates of the parameters.

DISCUSSION:

Youth with MASLD showed a delayed glucose metabolism, possibly because of greater utilization of the underlying substrates. A 3-h OGTT may be used to assess lactate metabolism effectively.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácido Láctico / Obesidad Infantil / Prueba de Tolerancia a la Glucosa Límite: Adolescent / Child / Female / Humans / Male Idioma: En Revista: Diabetes Obes Metab Asunto de la revista: ENDOCRINOLOGIA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácido Láctico / Obesidad Infantil / Prueba de Tolerancia a la Glucosa Límite: Adolescent / Child / Female / Humans / Male Idioma: En Revista: Diabetes Obes Metab Asunto de la revista: ENDOCRINOLOGIA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: Italia