Your browser doesn't support javascript.
loading
The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation.
Cory, Michael B; Li, Allen; Hurley, Christina M; Carman, Peter J; Pumroy, Ruth A; Hostetler, Zachary M; Perez, Ryann M; Venkatesh, Yarra; Li, Xinning; Gupta, Kushol; Petersson, E James; Kohli, Rahul M.
Afiliación
  • Cory MB; Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
  • Li A; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
  • Hurley CM; Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
  • Carman PJ; Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
  • Pumroy RA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
  • Hostetler ZM; Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  • Perez RM; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
  • Venkatesh Y; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
  • Li X; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
  • Gupta K; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
  • Petersson EJ; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA. ejpetersson@sas.upenn.edu.
  • Kohli RM; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA. ejpetersson@sas.upenn.edu.
Nat Struct Mol Biol ; 2024 May 16.
Article en En | MEDLINE | ID: mdl-38755298
ABSTRACT
The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Struct Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Struct Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos