Your browser doesn't support javascript.
loading
Optimization of methods for intrasplenic administration of human amniotic epithelial cells in order to perform safe and effective cell-based therapy for liver diseases.
Czekaj, Piotr; Król, Mateusz; Kolanko, Emanuel; Wieczorek, Patrycja; Bogunia, Edyta; Hermyt, Mateusz; Grajoszek, Aniela; Prusek, Agnieszka.
Afiliación
  • Czekaj P; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland. pcz@sum.edu.pl.
  • Król M; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
  • Kolanko E; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
  • Wieczorek P; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
  • Bogunia E; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
  • Hermyt M; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
  • Grajoszek A; Department of Experimental Medicine, Medical University of Silesia in Katowice, Medyków 4, Katowice, 40-752, Poland.
  • Prusek A; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
Stem Cell Rev Rep ; 20(6): 1599-1617, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38769232
ABSTRACT
In animal experimental models the administration of stem cells into the spleen should ensure high effectiveness of their implantation in the liver due to a direct vascular connection between the two organs. The aim of this study was to update the methods of experimental intrasplenic cell transplantation using human amniotic epithelial cells (hAECs) which are promising cells in the treatment of liver diseases. BALB/c mice were administered intrasplenically with 0.5, 1, and 2 million hAECs by direct bolus injection (400 µl/min) and via a subcutaneous splenic port by fast (20 µl/min) and slow (10 µl/min) infusion. The port was prepared by translocating the spleen to the skin pocket. The spleen, liver, and lungs were collected at 3 h, 6 h, and 24 h after the administration of cells. The distribution of hAECs, histopathological changes in the organs, complete blood count, and biochemical markers of liver damage were assessed. It has been shown that the method of intrasplenic cell administration affects the degree of liver damage. The largest number of mice showing significant liver damage was observed after direct administration and the lowest after slow administration through a port. Liver damage increased with the number of administered cells, which, paradoxically, resulted in increased liver colonization efficiency. It was concluded that the administration of 1 × 106 hAECs by slow infusion via a subcutaneous splenic port reduces the incidence of complications at the expense of a slight decrease in the effectiveness of implantation of the transplanted cells in the liver.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bazo / Células Epiteliales / Amnios / Hepatopatías / Ratones Endogámicos BALB C Límite: Animals / Female / Humans Idioma: En Revista: Stem Cell Rev Rep Año: 2024 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bazo / Células Epiteliales / Amnios / Hepatopatías / Ratones Endogámicos BALB C Límite: Animals / Female / Humans Idioma: En Revista: Stem Cell Rev Rep Año: 2024 Tipo del documento: Article País de afiliación: Polonia