Your browser doesn't support javascript.
loading
Antifouling nanoplatform for controlled attachment ofE. coli.
Tavangar, Amirhossein; Premnath, Priyatha; Tan, Bo; Venkatakrishnan, Krishnan.
Afiliación
  • Tavangar A; Department of Mathematics, Research Skills and Analysis, Humber College Institute of Technology, 205 Humber College Boulevard, Toronto, ON M9W 5L7, Canada.
  • Premnath P; Department of Biomedical Engineering, College of Engineering and Applied Science, University of Wisconsin, 3200 North Cramer Street, Milwaukee, WI 53211, United States of America.
  • Tan B; Nanocharacterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
  • Venkatakrishnan K; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 36 Queen Street East, Toronto, ON M5B 1W8, Canada.
Biomed Mater ; 19(4)2024 Jun 05.
Article en En | MEDLINE | ID: mdl-38772388
ABSTRACT
Biofouling is the most common cause of bacterial contamination in implanted materials/devices resulting in severe inflammation, implant mobilization, and eventual failure. Since bacterial attachment represents the initial step toward biofouling, developing synthetic surfaces that prevent bacterial adhesion is of keen interest in biomaterials research. In this study, we develop antifouling nanoplatforms that effectively impede bacterial adhesion and the consequent biofilm formation. We synthesize the antifouling nanoplatform by introducing silicon (Si)/silica nanoassemblies to the surface through ultrafast ionization of Si substrates. We assess the effectiveness of these nanoplatforms in inhibitingEscherichia coli(E. coli) adhesion. The findings reveal a significant reduction in bacterial attachment on the nanoplatform compared to untreated silicon, with bacteria forming smaller colonies. By manipulating physicochemical characteristics such as nanoassembly size/concentration and nanovoid size, we further control bacterial attachment. These findings suggest the potential of our synthesized nanoplatform in developing biomedical implants/devices with improved antifouling properties.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Silicio / Propiedades de Superficie / Adhesión Bacteriana / Biopelículas / Escherichia coli / Incrustaciones Biológicas Idioma: En Revista: Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Silicio / Propiedades de Superficie / Adhesión Bacteriana / Biopelículas / Escherichia coli / Incrustaciones Biológicas Idioma: En Revista: Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Canadá