Your browser doesn't support javascript.
loading
A Mean Field to Capture Asynchronous Irregular Dynamics of Conductance-Based Networks of Adaptive Quadratic Integrate-and-Fire Neuron Models.
Alexandersen, Christoffer G; Duprat, Chloé; Ezzati, Aitakin; Houzelstein, Pierre; Ledoux, Ambre; Liu, Yuhong; Saghir, Sandra; Destexhe, Alain; Tesler, Federico; Depannemaecker, Damien.
Afiliación
  • Alexandersen CG; Mathematical Institute, University of Oxford, OX2 6GG, Oxford, U.K.
  • Duprat C; Paris-Saclay University, Institute of Neuroscience, CNRS, 91400 Saclay, France.
  • Ezzati A; Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, 13005 Marseille, France chloe.duprat@epfedu.fr.
  • Houzelstein P; Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, 13005 Marseille, France aitakin.EZZATI@univ-amu.fr.
  • Ledoux A; Group for Neural Theory, LNC2, INSERM U960, DEC, École Normale Supérieure-PSL University, 75005 Paris, France pierre.houzelstein@gmail.com.
  • Liu Y; Paris-Saclay University, Institute of Neuroscience, CNRS, 91400 Saclay, France ambre.ledoux35@gmail.com.
  • Saghir S; Institute of Physiological Chemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany.
  • Destexhe A; Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, 53127 Bonn, Germany yuhong.liu@uni-mainz.de.
  • Tesler F; Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10623 Berlin, Germany sandra.saghir@campus.tu-berlin.de.
  • Depannemaecker D; Paris-Saclay University, Institute of Neuroscience, CNRS, 91400 Saclay, France.
Neural Comput ; 36(7): 1433-1448, 2024 Jun 07.
Article en En | MEDLINE | ID: mdl-38776953
ABSTRACT
Mean-field models are a class of models used in computational neuroscience to study the behavior of large populations of neurons. These models are based on the idea of representing the activity of a large number of neurons as the average behavior of mean-field variables. This abstraction allows the study of large-scale neural dynamics in a computationally efficient and mathematically tractable manner. One of these methods, based on a semianalytical approach, has previously been applied to different types of single-neuron models, but never to models based on a quadratic form. In this work, we adapted this method to quadratic integrate-and-fire neuron models with adaptation and conductance-based synaptic interactions. We validated the mean-field model by comparing it to the spiking network model. This mean-field model should be useful to model large-scale activity based on quadratic neurons interacting with conductance-based synapses.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Redes Neurales de la Computación / Modelos Neurológicos / Neuronas Límite: Animals / Humans Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Redes Neurales de la Computación / Modelos Neurológicos / Neuronas Límite: Animals / Humans Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article