Your browser doesn't support javascript.
loading
A 3.2 V Binary Layered Oxide Cathode for Potassium-Ion Batteries.
Jha, Pawan Kumar; Parate, Shubham Kumar; Sada, Krishnakanth; Yoshii, Kazuki; Masese, Titus; Nukala, Pavan; Sai Gautam, Gopalakrishnan; Pralong, Valérie; Fichtner, Maximilian; Barpanda, Prabeer.
Afiliación
  • Jha PK; Faraday Materials Laboratory (FaMaL), Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
  • Parate SK; Center for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
  • Sada K; Faraday Materials Laboratory (FaMaL), Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
  • Yoshii K; Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
  • Masese T; Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
  • Nukala P; Center for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
  • Sai Gautam G; Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India.
  • Pralong V; ENSICAEN, UNICAEN, CNRS, CRISMAT, Normandie University, Caen, 14000, France.
  • Fichtner M; Réseau sur le Stockage Electrochimique de l'Énergie (RS2E), Amiens, France.
  • Barpanda P; Electrochemical Energy Storage, Helmholtz Institute Ulm (HIU), 89081, Ulm, Germany.
Small ; : e2402204, 2024 May 22.
Article en En | MEDLINE | ID: mdl-38778727
ABSTRACT
Potassium-ion batteries (KIBs) can offer high energy density, cyclability, and operational safety while being economical due to the natural abundance of potassium. Utilizing graphite as an anode, suitable cathodes can realize full cells. Searching for potential cathodes, this work introduces P3-type K0.5Ni1/3Mn2/3O2 layered oxide as a potential candidate synthesized by a simple solid-state method. The material works as a 3.2 V cathode combining Ni redox at high voltage and Mn redox at low voltage and exhibits highly reversible K+ ion (de)insertion at ambient and elevated (40-50 °C) temperatures. First-principles calculations suggest the ground state in-plane Mn-Ni ordering in the MO2 sheets is strongly correlated to the K-content in the framework, leading to an interwoven and alternative row ordering of Ni-Mn in K0.5Ni1/3Mn2/3O2. Postmortem and electrochemical titration reveal the occurrence of a solid solution mechanism during K+ (de)insertion. The findings suggest that the Ni addition can effectively tune the electronic and structural properties of the cathode, leading to improved electrochemical performance. This work provides new insights in the quest to develop potential low-cost Co-free KIB cathodes for practical applications in stationary energy storage.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India