Your browser doesn't support javascript.
loading
Incremental increases in physiological fluid shear progressively alter pathogenic phenotypes and gene expression in multidrug resistant Salmonella.
Yang, Jiseon; Barrila, Jennifer; Nauman, Eric A; Nydam, Seth D; Yang, Shanshan; Park, Jin; Gutierrez-Jensen, Ami D; Castro, Christian L; Ott, C Mark; Buss, Kristina; Steel, Jason; Zakrajsek, Anne D; Schuff, Mary M; Nickerson, Cheryl A.
Afiliación
  • Yang J; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
  • Barrila J; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
  • Nauman EA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
  • Nydam SD; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
  • Yang S; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
  • Park J; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
  • Gutierrez-Jensen AD; Department of Animal Care & Technologies, Arizona State University, Tempe, AZ, USA.
  • Castro CL; Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, USA.
  • Ott CM; Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
  • Buss K; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
  • Steel J; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
  • Zakrajsek AD; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
  • Schuff MM; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
  • Nickerson CA; JES Tech, Houston, TX, USA.
Gut Microbes ; 16(1): 2357767, 2024.
Article en En | MEDLINE | ID: mdl-38783686
ABSTRACT
The ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during infection, as they experience wide fluid shear fluctuations in the host. However, little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. Herein, we combined mathematical modeling with hydrodynamic bacterial culture to profile transcriptomic and pathogenesis-related phenotypes of multidrug resistant S. Typhimurium (ST313 D23580) under different fluid shear conditions relevant to its transition from the intestinal tract to the bloodstream. We report that D23580 exhibited incremental changes in transcriptomic profiles that correlated with its pathogenic phenotypes in response to these progressive increases in fluid shear. This is the first demonstration that incremental changes in fluid shear forces alter stress responses and gene expression in any ST313 strain and offers mechanistic insight into how forces encountered by bacteria during infection might impact their disease-causing ability in unexpected ways.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenotipo / Salmonella typhimurium / Farmacorresistencia Bacteriana Múltiple Límite: Humans Idioma: En Revista: Gut Microbes Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenotipo / Salmonella typhimurium / Farmacorresistencia Bacteriana Múltiple Límite: Humans Idioma: En Revista: Gut Microbes Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos