Your browser doesn't support javascript.
loading
Unusual facet and co-catalyst effects in TiO2-based photocatalytic coupling of methane.
Zhang, Huizhen; Sun, Pengfei; Fei, Xiaozhen; Wu, Xuejiao; Huang, Zongyi; Zhong, Wanfu; Gong, Qiaobin; Zheng, Yanping; Zhang, Qinghong; Xie, Shunji; Fu, Gang; Wang, Ye.
Afiliación
  • Zhang H; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Sun P; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Fei X; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Wu X; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Huang Z; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Zhong W; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Gong Q; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Zheng Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Zhang Q; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Xie S; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
  • Fu G; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China. shunji_xie@xmu.edu.cn.
  • Wang Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Ch
Nat Commun ; 15(1): 4453, 2024 May 24.
Article en En | MEDLINE | ID: mdl-38789454
ABSTRACT
Photocatalytic coupling of methane to ethane and ethylene (C2 compounds) offers a promising approach to utilizing the abundant methane resource. However, the state-of-the-art photocatalysts usually suffer from very limited C2 formation rates. Here, we report our discovery that the anatase TiO2 nanocrystals mainly exposing {101} facets, which are generally considered less active in photocatalysis, demonstrate surprisingly better performances than those exposing the high-energy {001} facet. The palladium co-catalyst plays a pivotal role and the Pd2+ site on co-catalyst accounts for the selective C2 formation. We unveil that the anatase {101} facet favors the formation of hydroxyl radicals in aqueous phase near the surface, where they activate methane molecules into methyl radicals, and the Pd2+ site participates in facilitating the adsorption and coupling of methyl radicals. This work provides a strategy to design efficient nanocatalysts for selective photocatalytic methane coupling by reaction-space separation to optimize heterogeneous-homogeneous reactions at solid-liquid interfaces.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Suiza