Your browser doesn't support javascript.
loading
Differential roles of putative arginine fingers of AAA+ ATPases Rvb1 and Rvb2.
Warnock, Jennifer L; Ball, Jacob A; Najmi, Saman M; Henes, Mina; Vazquez, Amanda; Koshnevis, Sohail; Wieden, Hans-Joachim; Conn, Graeme L; Ghalei, Homa.
Afiliación
  • Warnock JL; Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA.
  • Ball JA; Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA.
  • Najmi SM; Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA.
  • Henes M; Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA.
  • Vazquez A; Graduate Program in Biochemistry, Cell & Developmental Biology (BCDB), Emory University, Atlanta, Georgia, USA.
  • Koshnevis S; Medical Scientist Training Program, Emory University School of Medicine, Atlanta, Georgia, USA.
  • Wieden HJ; Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada.
  • Conn GL; Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA.
  • Ghalei H; Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada.
bioRxiv ; 2024 May 13.
Article en En | MEDLINE | ID: mdl-38798342
ABSTRACT
The evolutionarily conserved AAA+ ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA+ subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA+ subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex. Using a combination of biochemical and genetic approaches, we show that replacing the homologous arginine fingers of Rvb1 and Rvb2 with different amino acids not only has distinct effects on the catalytic activity of the complex, but also impacts cell growth, and the Rvb1/2 interactions with binding partners. Using molecular dynamics simulations, we find that changes near the active site of Rvb1 and Rvb2 cause long-range effects on the protein dynamics in the insertion domain, suggesting a molecular basis for how enzymatic activity within the catalytic site of ATP hydrolysis can be relayed to other domains of the Rvb1/2 complex to modulate its function. Further, we show the impact that the arginine finger variants have on snoRNP biogenesis and validate the findings from molecular dynamics simulations using a targeted genetic screen. Together, our results reveal new aspects of the regulation of the Rvb1/2 complex by identifying a relay of long-range molecular communication from the ATPase active site of the complex to the binding site of cofactors. Most importantly, our findings suggest that despite high similarity and cooperation within the same protein complex, the two proteins have evolved with unique properties critical for the regulation and function of the Rvb1/2 complex.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos