Your browser doesn't support javascript.
loading
Advances in Polymeric Nanomaterial-mediated Autophagy for Cancer Therapy.
Zhao, Jingyu; Hou, Xiaoxue; Zhao, Cuicui; Su, Linzhu; Huang, Fan.
Afiliación
  • Zhao J; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical
  • Hou X; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical
  • Zhao C; Department of VIP Ward, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical U
  • Su L; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical
  • Huang F; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical
Chembiochem ; : e202400261, 2024 May 31.
Article en En | MEDLINE | ID: mdl-38819577
ABSTRACT
Autophagy is an important biological mechanism for eukaryotic cells to regulate growth, death, and energy metabolism, and plays an important role in removing damaged organelles, misfolded or aggregated proteins, and clearing pathogens. It has been found that autophagy is closely related to cell survival and death, and is of great significance in cancerigenesis and development, playing a bidirectional role in cancer inhibition and cancer promotion. Therefore, treating cancers by regulating autophagy has attracted much attention. A large amount of research evidence indicates that polymeric nanomaterials are able to regulate cellular autophagy, and their good biocompatibility, degradability, and functionalizable modification open up a broad application prospect for improving the therapeutic effect of cancers. This review provides an overview of the research progress of polymeric nanomaterials for modulating autophagy in the treatment of cancers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chembiochem Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chembiochem Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article