Your browser doesn't support javascript.
loading
Differences in the characteristics and functions of brain and spinal cord regulatory T cells.
Watanabe, Mahiro; Matsui, Ako; Awata, Natsumi; Nagafuchi, Ayame; Kawazoe, Mio; Harada, Yoshihiro; Ito, Minako.
Afiliación
  • Watanabe M; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
  • Matsui A; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
  • Awata N; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
  • Nagafuchi A; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
  • Kawazoe M; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
  • Harada Y; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
  • Ito M; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan. minakoito@bioreg.kyushu-u.ac.jp.
J Neuroinflammation ; 21(1): 146, 2024 Jun 01.
Article en En | MEDLINE | ID: mdl-38824594
ABSTRACT
T cells play an important role in the acquired immune response, with regulatory T cells (Tregs) serving as key players in immune tolerance. Tregs are found in nonlymphoid and damaged tissues and are referred to as "tissue Tregs". They have tissue-specific characteristics and contribute to immunomodulation, homeostasis, and tissue repair through interactions with tissue cells. However, important determinants of Treg tissue specificity, such as antigen specificity, tissue environment, and pathology, remain unclear. In this study, we analyzed Tregs in the central nervous system of mice with ischemic stroke and experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. The gene expression pattern of brain Tregs in the EAE model was more similar to that of ischemic stroke Tregs in the brain than to that of spinal cord Tregs. In addition, most T-cell receptors (TCRs) with high clonality were present in both the brain and spinal cord. Furthermore, Gata3+ and Rorc+ Tregs expressed TCRs recognizing MOG in the spinal cord, suggesting a tissue environment conducive to Rorc expression. Tissue-specific chemokine/chemokine receptor interactions in the spinal cord and brain influenced Treg localization. Finally, spinal cord- or brain-derived Tregs had greater anti-inflammatory capacities in EAE mice, respectively. Taken together, these findings suggest that the tissue environment, rather than pathogenesis or antigen specificity, is the primary determinant of the tissue-specific properties of Tregs. These findings may contribute to the development of novel therapies to suppress inflammation through tissue-specific Treg regulation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Médula Espinal / Encéfalo / Linfocitos T Reguladores / Encefalomielitis Autoinmune Experimental / Ratones Endogámicos C57BL Límite: Animals Idioma: En Revista: J Neuroinflammation Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Médula Espinal / Encéfalo / Linfocitos T Reguladores / Encefalomielitis Autoinmune Experimental / Ratones Endogámicos C57BL Límite: Animals Idioma: En Revista: J Neuroinflammation Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón