Enhanced Photocatalytic Hydrogen Evolution of In2S3 by Decorating In2O3 with Rich Oxygen Vacancies.
Inorg Chem
; 63(24): 11125-11134, 2024 Jun 17.
Article
en En
| MEDLINE
| ID: mdl-38833320
ABSTRACT
The hydrogen (H2) evolution rates of photocatalysts suffer from weak oxidation and reduction ability and low photogenerated charge carrier separation efficiency. Herein, by combining band-gap structure optimization and vacancy modulation through a one-step hydrothermal method, In2O3 containing oxygen vacancy (Ov/In2O3) is simply introduced into In2S3 to promote photocatalytic hydrogen evolution. Specifically, the change in the sulfur source ratio can induce the coexistence of Ov/In2O3 and In2S3 in a high-temperature hydrothermal process. Under light irradiation, In2S3@Ov/In2O3-0.1 nanosheets hold a remarkable average H2 evolution rate up to 4.04 mmol g-1 h-1, which is 32.14, 11.91, and 2.25-fold better than those of pristine In2S3, In2S3@Ov/In2O3-0.02, and In2S3@Ov/In2O3-0.25 nanosheets, respectively. The ultraviolet-visible (UV-vis) diffuse reflectance and photoluminescence (PL) spectra reveal that the formation of Ov/In2O3 in In2S3 optimizes the band-gap structure and accelerates the migration of the photogenerated charge carrier of In2S3@Ov/In2O3-x nanosheets, respectively. Both the enhancement of oxidation and reduction ability and photogenerated charge carrier separation ability are responsible for the remarkable improvement in photocatalytic H2 evolution performance. This work provides a new strategy to prepare a composite of metal sulfide and metal oxide through a one-step hydrothermal method.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Año:
2024
Tipo del documento:
Article
País de afiliación:
China