Your browser doesn't support javascript.
loading
Bayesian transition models for ordinal longitudinal outcomes.
Rohde, Maximilian D; French, Benjamin; Stewart, Thomas G; Harrell, Frank E.
Afiliación
  • Rohde MD; Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
  • French B; Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
  • Stewart TG; School of Data Science, University of Virginia, Charlottesville, Virginia, USA.
  • Harrell FE; Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Stat Med ; 43(18): 3539-3561, 2024 Aug 15.
Article en En | MEDLINE | ID: mdl-38853380
ABSTRACT
Ordinal longitudinal outcomes are becoming common in clinical research, particularly in the context of COVID-19 clinical trials. These outcomes are information-rich and can increase the statistical efficiency of a study when analyzed in a principled manner. We present Bayesian ordinal transition models as a flexible modeling framework to analyze ordinal longitudinal outcomes. We develop the theory from first principles and provide an application using data from the Adaptive COVID-19 Treatment Trial (ACTT-1) with code examples in R. We advocate that researchers use ordinal transition models to analyze ordinal longitudinal outcomes when appropriate alongside standard methods such as time-to-event modeling.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Estadísticos / Teorema de Bayes / COVID-19 Límite: Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Estadísticos / Teorema de Bayes / COVID-19 Límite: Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos