Bayesian transition models for ordinal longitudinal outcomes.
Stat Med
; 43(18): 3539-3561, 2024 Aug 15.
Article
en En
| MEDLINE
| ID: mdl-38853380
ABSTRACT
Ordinal longitudinal outcomes are becoming common in clinical research, particularly in the context of COVID-19 clinical trials. These outcomes are information-rich and can increase the statistical efficiency of a study when analyzed in a principled manner. We present Bayesian ordinal transition models as a flexible modeling framework to analyze ordinal longitudinal outcomes. We develop the theory from first principles and provide an application using data from the Adaptive COVID-19 Treatment Trial (ACTT-1) with code examples in R. We advocate that researchers use ordinal transition models to analyze ordinal longitudinal outcomes when appropriate alongside standard methods such as time-to-event modeling.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Modelos Estadísticos
/
Teorema de Bayes
/
COVID-19
Límite:
Humans
Idioma:
En
Revista:
Stat Med
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos