Your browser doesn't support javascript.
loading
Dual-Modal Cellular Nanoparticles for Continuous Neurotoxin Detoxification.
Kai, Mingxuan; Shen, Wei-Ting; Yu, Yiyan; Wang, Dan; Zhang, Jiayuan Alex; Wang, Shuyan; Fang, Ronnie H; Gao, Weiwei; Zhang, Liangfang.
Afiliación
  • Kai M; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Shen WT; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Yu Y; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Wang D; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Zhang JA; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Wang S; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Fang RH; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Gao W; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
  • Zhang L; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
Nano Lett ; 2024 Jun 10.
Article en En | MEDLINE | ID: mdl-38855905
ABSTRACT
Neurotoxins are known for their extreme lethality. However, due to their enormous diversity, effective and broad-spectrum countermeasures are lacking. This study presents a dual-modal cellular nanoparticle (CNP) formulation engineered for continuous neurotoxin neutralization. The formulation involves encapsulating the metabolic enzyme N-sulfotransferase (SxtN) into metal-organic framework (MOF) nanoparticle cores and coating them with a natural neuronal membrane, termed "Neuron-MOF/SxtN-NPs". The resulting nanoparticles combine membrane-enabled broad-spectrum neurotoxin neutralization with enzyme payload-enabled continuous neurotoxin neutralization. The studies confirm the protection of the enzyme payload by the MOF core and validate the continuous neutralization of saxitoxin (STX). In vivo studies conducted using a mouse model of STX intoxication reveal markedly improved survival rates compared with control groups. Furthermore, acute toxicity assessments show no adverse effects associated with the administration of Neuron-MOF/SxtN-NPs in healthy mice. Overall, Neuron-MOF/SxtN-NPs represent a unique biomimetic nanomedicine platform poised to effectively neutralize neurotoxins, marking an important advancement in the field of countermeasure nanomedicine.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos