Your browser doesn't support javascript.
loading
Dual-polarization MZM-based photonic nonlinear analog self-interference cancellation for in-band full-duplex radios.
Opt Express ; 32(10): 16983-16998, 2024 May 06.
Article en En | MEDLINE | ID: mdl-38858892
ABSTRACT
In this paper, we propose a dual-polarization Mach-Zehnder modulator-based photonic nonlinear analog self-interference cancellation (SIC) technique for in-band full duplex (IBFD) systems. By using the proposed technique, an arbitrary 4th order nonlinear transfer function can be generated, meaning the performance limitation caused by the nonlinearity of the analog SIC circuit can be overcome by imitating the nonlinear transfer function of the analog SIC circuit before cancellation. This paper also presents a performance analysis through simulations and the results of a proof-of-concept demonstration. In the experiment, the proposed nonlinear SIC technique could achieve 29 dB cancellation over 500 MHz bandwidth centered at 1.25 GHz frequency along various degree of distortion caused by nonlinearity. In addition, the performance enhancements achieved by the proposed technique are evaluated in terms of error vector magnitudes (EVMs) and constellations of the signal-of-interest (SOI) in the simulation which is based on the experimental SIC results. More than 3 dB of SOI power gain could be obtained in evaluated EVM performances.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2024 Tipo del documento: Article