Your browser doesn't support javascript.
loading
Rapid, antibiotic incubation-free determination of tuberculosis drug resistance using machine learning and Raman spectroscopy.
Ogunlade, Babatunde; Tadesse, Loza F; Li, Hongquan; Vu, Nhat; Banaei, Niaz; Barczak, Amy K; Saleh, Amr A E; Prakash, Manu; Dionne, Jennifer A.
Afiliación
  • Ogunlade B; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
  • Tadesse LF; Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA 94305.
  • Li H; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142.
  • Vu N; The Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139.
  • Banaei N; Jameel Clinic for AI & Healthcare, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Barczak AK; Department of Electrical Engineering, Stanford University, Stanford, CA 94305.
  • Saleh AAE; Pumpkinseed Technologies, Inc., Palo Alto, CA 94306.
  • Prakash M; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305.
  • Dionne JA; The Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139.
Proc Natl Acad Sci U S A ; 121(25): e2315670121, 2024 Jun 18.
Article en En | MEDLINE | ID: mdl-38861604
ABSTRACT
Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths and 10 million new cases reported anually. The causative organism Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification and rapid antibiotic susceptibility testing of Mtb are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the Mtb complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and on patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all five BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5,000. We show how this instrument and our machine learning model enable combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Espectrometría Raman / Pruebas de Sensibilidad Microbiana / Aprendizaje Automático / Mycobacterium tuberculosis / Antituberculosos Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Espectrometría Raman / Pruebas de Sensibilidad Microbiana / Aprendizaje Automático / Mycobacterium tuberculosis / Antituberculosos Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article