Development of a high-throughput dual-stream liquid chromatography-tandem mass spectrometry method to screen for inhibitors of glutamate carboxypeptidase II.
Rapid Commun Mass Spectrom
; : e9772, 2024 Jun 12.
Article
en En
| MEDLINE
| ID: mdl-38867136
ABSTRACT
RATIONALE Glutamate carboxypeptidase II (GCPII) catalyzes the hydrolysis of N-acetylaspartylglutamate (NAAG) to yield glutamate (Glu) and N-acetylaspartate (NAA). Inhibition of GCPII has been shown to remediate the neurotoxicity of excess Glu in a variety of cell and animal disease models. A robust high-throughput liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was needed to quantify GCPII enzymatic activity in a biochemical high-throughput screening assay. METHODS:
A dual-stream LC/MS/MS method was developed. Two parallel eluent streams ran identical HILIC gradient methods on BEH-Amide (2 × 30 mm) columns. Each LC channel was run independently, and the cycle time was 2 min per channel. Overall throughput was 1 min per sample for the dual-channel integrated system. Multiply injected acquisition files were split during data review, and batch metadata were automatically paired with raw data during the review process.RESULTS:
Two LC sorbents, BEH-Amide and Penta-HILIC, were tested to separate the NAAG cleavage product Glu from isobaric interference and ion suppressants in the bioassay matrix. Early elution of NAAG and NAA on BEH-Amide allowed interfering species to be diverted to waste. The limit of quantification was 0.1 pmol for Glu. The Z-factor of this assay averaged 0.85. Over 36 000 compounds were screened using this method.CONCLUSIONS:
A fast gradient dual-stream LC/MS/MS method for Glu quantification in GCPII biochemical screening assay samples was developed and validated. HILIC separation chemistry offers robust performance and unique selectivity for targeted positive mode quantification of Glu, NAA, and NAAG.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Rapid Commun Mass Spectrom
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos