Your browser doesn't support javascript.
loading
Amphichdiral enhancement on singlet oxygen generation and stable thallium immobilization using iron-driven copper oxide.
Liu, Zhujun; Dai, Xinning; He, Jun; Lin, Mengyi; Luo, Hongbing; Fan, Liangqian; Zhang, Ke; Ma, Dandan; Wang, Jun; Chen, Wei.
Afiliación
  • Liu Z; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • Dai X; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • He J; Environmental Monitoring Station of Hanyuan, Ya'an, 625300, China.
  • Lin M; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • Luo H; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • Fan L; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • Zhang K; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • Ma D; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • Wang J; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
  • Chen W; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China. Electronic address: chenwei0835@sicau.e
J Environ Manage ; 365: 121524, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38897082
ABSTRACT
Thallium (Tl) as a prominent priority contaminant in aquatic environment necessitates rigorous regulation. However, limited horizon devotes the impact of selective oxidation on the process of thallium purification. In this study, selective active radical of singlet oxygen (1O2) was continually generated for Tl(Ⅰ) oxidation accomplished with efficient Tl(Ⅲ) immobilization using iron-driven copper oxide (CuFe)/peroxymonosulfate (PMS). Fe-doping changed the active center of electronic structure for enhancing the catalytic and adsorptive reactivities, and installed magnetism for solid-liquid separation. Rapid reaction rate (0.253 min-1) coupled with vigorous elimination efficiency (98.32%) relied on electrostatic attraction, surface complexation, and H-bond interaction. EPR and XPS analyses demonstrated that the synergistic effects of ≡ Cu(Ⅰ)/≡Cu(Ⅱ) and ≡ Fe(Ⅲ)/≡Fe(Ⅱ) redounded to the sustained generation of 1O2 through the pathway of PMS → •O2- → 1O2, and 1O2 exploited an advantage to selectively oxidize Tl(Ⅰ) to Tl(Ⅲ). 3D isosurface cubic charts revealed that the immobilizing ability of Tl(Ⅲ) hydrate for CuFe was notably superior to that of Tl(Ⅲ) hydrate for CuO and Tl(Ⅰ) hydrate for CuO/CuFe, which further attested surface reactivity promoted stable immobilization form. This work develops the continuous generation of 1O2 and stable immobilization with the goal of efficiently cleansing Tl-containing wastewater.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Talio / Oxígeno Singlete / Hierro Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Talio / Oxígeno Singlete / Hierro Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article País de afiliación: China