Your browser doesn't support javascript.
loading
Human SARS-CoV-2 challenge uncovers local and systemic response dynamics.
Lindeboom, Rik G H; Worlock, Kaylee B; Dratva, Lisa M; Yoshida, Masahiro; Scobie, David; Wagstaffe, Helen R; Richardson, Laura; Wilbrey-Clark, Anna; Barnes, Josephine L; Kretschmer, Lorenz; Polanski, Krzysztof; Allen-Hyttinen, Jessica; Mehta, Puja; Sumanaweera, Dinithi; Boccacino, Jacqueline M; Sungnak, Waradon; Elmentaite, Rasa; Huang, Ni; Mamanova, Lira; Kapuge, Rakesh; Bolt, Liam; Prigmore, Elena; Killingley, Ben; Kalinova, Mariya; Mayer, Maria; Boyers, Alison; Mann, Alex; Swadling, Leo; Woodall, Maximillian N J; Ellis, Samuel; Smith, Claire M; Teixeira, Vitor H; Janes, Sam M; Chambers, Rachel C; Haniffa, Muzlifah; Catchpole, Andrew; Heyderman, Robert; Noursadeghi, Mahdad; Chain, Benny; Mayer, Andreas; Meyer, Kerstin B; Chiu, Christopher; Nikolic, Marko Z; Teichmann, Sarah A.
Afiliación
  • Lindeboom RGH; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK. r.lindeboom@nki.nl.
  • Worlock KB; The Netherlands Cancer Institute, Amsterdam, The Netherlands. r.lindeboom@nki.nl.
  • Dratva LM; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Yoshida M; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Scobie D; Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Wagstaffe HR; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Richardson L; Research Department of Infection, Division of Infection and Immunity, University College London, London, UK.
  • Wilbrey-Clark A; Department of Infectious Disease, Imperial College London, London, UK.
  • Barnes JL; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Kretschmer L; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Polanski K; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Allen-Hyttinen J; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Mehta P; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Sumanaweera D; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Boccacino JM; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Sungnak W; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Elmentaite R; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Huang N; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Mamanova L; Department of Microbiology, Faculty of Science, and Integrative Computational BioScience Center, Mahidol University, Bangkok, Thailand.
  • Kapuge R; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Bolt L; Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, UK.
  • Prigmore E; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Killingley B; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Kalinova M; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Mayer M; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Boyers A; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Mann A; Department of Infectious Diseases, University College London Hospital, London, UK.
  • Swadling L; hVIVO, London, UK.
  • Woodall MNJ; hVIVO, London, UK.
  • Ellis S; hVIVO, London, UK.
  • Smith CM; hVIVO, London, UK.
  • Teixeira VH; Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
  • Janes SM; UCL Great Ormond Street Institute of Child Health, London, UK.
  • Chambers RC; UCL Great Ormond Street Institute of Child Health, London, UK.
  • Haniffa M; UCL Great Ormond Street Institute of Child Health, London, UK.
  • Catchpole A; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Heyderman R; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Noursadeghi M; UCL Respiratory, Division of Medicine, University College London, London, UK.
  • Chain B; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
  • Mayer A; hVIVO, London, UK.
  • Meyer KB; Research Department of Infection, Division of Infection and Immunity, University College London, London, UK.
  • Chiu C; Research Department of Infection, Division of Infection and Immunity, University College London, London, UK.
  • Nikolic MZ; Research Department of Infection, Division of Infection and Immunity, University College London, London, UK.
  • Teichmann SA; Research Department of Infection, Division of Infection and Immunity, University College London, London, UK.
Nature ; 631(8019): 189-198, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38898278
ABSTRACT
The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / SARS-CoV-2 / COVID-19 / Multiómica Límite: Female / Humans / Male Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / SARS-CoV-2 / COVID-19 / Multiómica Límite: Female / Humans / Male Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido