Your browser doesn't support javascript.
loading
A comprehensive assessment of photosynthetic acclimation to shade in C4 grass (Cynodon dactylon (L.) Pers.).
Wang, Guangyang; Mao, Jinyan; Ji, Mingxia; Wang, Wei; Fu, Jinmin.
Afiliación
  • Wang G; Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
  • Mao J; College of Agriculture, Ludong University, Yantai, 264025, Shandong, China.
  • Ji M; Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
  • Wang W; Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
  • Fu J; Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China. turfcn@qq.com.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Article en En | MEDLINE | ID: mdl-38902617
ABSTRACT

BACKGROUND:

Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass.

RESULTS:

We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots.

CONCLUSIONS:

As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotosíntesis / Hojas de la Planta / Cynodon / Aclimatación Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotosíntesis / Hojas de la Planta / Cynodon / Aclimatación Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China