Your browser doesn't support javascript.
loading
Functional near-infrared spectroscopy-based neurofeedback training regulates time-on-task effects and enhances sustained cognitive performance.
Xu, Jiayu; Zhang, Wenchao; Yu, Juan; Li, Guanya; Cui, Jianqi; Qi, Haowen; Zhang, Minmin; Li, Mengshan; Hu, Yang; Wang, Haoyi; Min, Huaqiao; Xu, Fenggang; Xu, Xiaodan; Zhu, Chaozhe; Xiao, Yi; Zhang, Yi.
Afiliación
  • Xu J; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
  • Zhang W; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an,
  • Yu J; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
  • Li G; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an,
  • Cui J; Department of Gastroenterology, Xijing Hospital, Air Force Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.
  • Qi H; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
  • Zhang M; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an,
  • Li M; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
  • Hu Y; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an,
  • Wang H; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
  • Min H; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an,
  • Xu F; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
  • Xu X; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an,
  • Zhu C; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
  • Xiao Y; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an,
  • Zhang Y; Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China.
Cereb Cortex ; 34(6)2024 Jun 04.
Article en En | MEDLINE | ID: mdl-38904080
ABSTRACT
Time-on-task effect is a common consequence of long-term cognitive demand work, which reflects reduced behavioral performance and increases the risk of accidents. Neurofeedback is a neuromodulation method that can guide individuals to regulate their brain activity and manifest as changes in related symptoms and cognitive behaviors. This study aimed to examine the effects of functional near-infrared spectroscopy-based neurofeedback training on time-on-task effects and sustained cognitive performance. A randomized, single-blind, sham-controlled study was performed 17 participants received feedback signals of their own dorsolateral prefrontal cortex activity (neurofeedback group), and 16 participants received feedback signals of dorsolateral prefrontal cortex activity from the neurofeedback group (sham-neurofeedback group). All participants received 5 neurofeedback training sessions and completed 2 sustained cognitive tasks, including a 2-back task and a psychomotor vigilance task, to evaluate behavioral performance changes following neurofeedback training. Results showed that neurofeedback relative to the sham-neurofeedback group exhibited increased dorsolateral prefrontal cortex activation, increased accuracy in the 2-back task, and decreased mean response time in the psychomotor vigilance task after neurofeedback training. In addition, the neurofeedback group showed slower decline performance during the sustained 2-back task after neurofeedback training compared with sham-neurofeedback group. These findings demonstrate that neurofeedback training could regulate time-on-task effects on difficult task and enhance performance on sustained cognitive tasks by increasing dorsolateral prefrontal cortex activity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Desempeño Psicomotor / Cognición / Espectroscopía Infrarroja Corta / Neurorretroalimentación Límite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Desempeño Psicomotor / Cognición / Espectroscopía Infrarroja Corta / Neurorretroalimentación Límite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: China