Your browser doesn't support javascript.
loading
Broadening of the Divertor Heat Flux Profile in High Confinement Tokamak Fusion Plasmas with Edge Pedestals Limited by Turbulence in DIII-D.
Ernst, D R; Bortolon, A; Chang, C S; Ku, S; Scotti, F; Wang, H Q; Yan, Z; Chen, Jie; Chrystal, C; Glass, F; Haskey, S; Hood, R; Khabanov, F; Laggner, F; Lasnier, C; McKee, G R; Rhodes, T L; Truong, D; Watkins, J.
Afiliación
  • Ernst DR; <a href="https://ror.org/042nb2s44">Massachusetts Institute of Technology</a>, Cambridge, Massachusetts 02139, USA.
  • Bortolon A; <a href="https://ror.org/03vn1ts68">Princeton University Plasma Physics Laboratory</a>, Princeton, New Jersey 08840, USA.
  • Chang CS; <a href="https://ror.org/03vn1ts68">Princeton University Plasma Physics Laboratory</a>, Princeton, New Jersey 08840, USA.
  • Ku S; <a href="https://ror.org/03vn1ts68">Princeton University Plasma Physics Laboratory</a>, Princeton, New Jersey 08840, USA.
  • Scotti F; <a href="https://ror.org/041nk4h53">Lawrence Livermore National Laboratory</a>, Livermore, California 94550, USA.
  • Wang HQ; <a href="https://ror.org/03ngjpk76">General Atomics</a>, San Diego, California 92121, USA.
  • Yan Z; <a href="https://ror.org/01y2jtd41">University of Wisconsin</a>, Madison, Wisconsin 53715, USA.
  • Chen J; <a href="https://ror.org/046rm7j60">University of California</a>, Los Angeles, California 90095, USA.
  • Chrystal C; <a href="https://ror.org/03ngjpk76">General Atomics</a>, San Diego, California 92121, USA.
  • Glass F; <a href="https://ror.org/03ngjpk76">General Atomics</a>, San Diego, California 92121, USA.
  • Haskey S; <a href="https://ror.org/03vn1ts68">Princeton University Plasma Physics Laboratory</a>, Princeton, New Jersey 08840, USA.
  • Hood R; <a href="https://ror.org/058m7ey48">Sandia National Laboratory</a>, Livermore, California 94551, USA.
  • Khabanov F; <a href="https://ror.org/01y2jtd41">University of Wisconsin</a>, Madison, Wisconsin 53715, USA.
  • Laggner F; <a href="https://ror.org/04tj63d06">North Carolina State University</a>, Raleigh, North Carolina 27695, USA.
  • Lasnier C; <a href="https://ror.org/041nk4h53">Lawrence Livermore National Laboratory</a>, Livermore, California 94550, USA.
  • McKee GR; <a href="https://ror.org/01y2jtd41">University of Wisconsin</a>, Madison, Wisconsin 53715, USA.
  • Rhodes TL; <a href="https://ror.org/046rm7j60">University of California</a>, Los Angeles, California 90095, USA.
  • Truong D; <a href="https://ror.org/058m7ey48">Sandia National Laboratory</a>, Livermore, California 94551, USA.
  • Watkins J; <a href="https://ror.org/058m7ey48">Sandia National Laboratory</a>, Livermore, California 94551, USA.
Phys Rev Lett ; 132(23): 235102, 2024 Jun 07.
Article en En | MEDLINE | ID: mdl-38905687
ABSTRACT
Multimachine empirical scaling predicts an extremely narrow heat exhaust layer in future high magnetic field tokamaks, producing high power densities that require mitigation. In the experiments presented, the width of this exhaust layer is nearly doubled using actuators to increase turbulent transport in the plasma edge. This is achieved in low collisionality, high confinement edge pedestals with their gradients limited by turbulent transport instead of large-scale, coherent instabilities. The exhaust heat flux profile width and divertor leg diffusive spreading both double as a high frequency band of turbulent fluctuations propagating in the electron diamagnetic direction doubles in amplitude. The results are quantitatively reproduced in electromagnetic XGC particle-in-cell simulations which show the heat flux carried by electrons emerges to broaden the heat flux profile, directly supported by Langmuir probe measurements.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos