Your browser doesn't support javascript.
loading
FilamentID reveals the composition and function of metabolic enzyme polymers during gametogenesis.
Hugener, Jannik; Xu, Jingwei; Wettstein, Rahel; Ioannidi, Lydia; Velikov, Daniel; Wollweber, Florian; Henggeler, Adrian; Matos, Joao; Pilhofer, Martin.
Afiliación
  • Hugener J; Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
  • Xu J; Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
  • Wettstein R; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
  • Ioannidi L; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
  • Velikov D; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria.
  • Wollweber F; Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
  • Henggeler A; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
  • Matos J; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria. Electronic address: joao.matos@univie.ac.at.
  • Pilhofer M; Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland. Electronic address: pilhofer@biol.ethz.ch.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Article en En | MEDLINE | ID: mdl-38906101
ABSTRACT
Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Gametogénesis / Mitocondrias Idioma: En Revista: Cell Año: 2024 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Gametogénesis / Mitocondrias Idioma: En Revista: Cell Año: 2024 Tipo del documento: Article País de afiliación: Austria