Your browser doesn't support javascript.
loading
Unraveling the molecular mechanisms of fish physiological response to freshwater salinization: A comparative multi-tissue transcriptomic study in a river polluted by potash mining.
Escobar-Sierra, Camilo; Cañedo-Argüelles, Miguel; Vinyoles, Dolors; Lampert, Kathrin P.
Afiliación
  • Escobar-Sierra C; Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany. Electronic address: cescobar@uni-koeln.de.
  • Cañedo-Argüelles M; FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain.
  • Vinyoles D; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
  • Lampert KP; Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany.
Environ Pollut ; 357: 124400, 2024 Jun 19.
Article en En | MEDLINE | ID: mdl-38906407
ABSTRACT
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article