Discovering Fragile Clades and Causal Sequences in Phylogenomics by Evolutionary Sparse Learning.
Mol Biol Evol
; 41(7)2024 Jul 03.
Article
en En
| MEDLINE
| ID: mdl-38916040
ABSTRACT
Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, reconstruct organismal relationships with high statistical confidence. But, inferred relationships can be sensitive to excluding just a few sequences. Currently, there is no direct way to identify fragile relationships and the associated individual gene sequences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and animal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, substitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Filogenia
/
Genómica
Límite:
Animals
Idioma:
En
Revista:
Mol Biol Evol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos