Your browser doesn't support javascript.
loading
A Comparative Study on the Interaction Between Protein and PET Micro/Nanoplastics: Structural and Surface Characteristics of Particles and Impacts on Lung Carcinoma Cells (A549) and Staphylococcus aureus.
Baysal, Asli; Saygin, Hasan; Soyocak, Ahu.
Afiliación
  • Baysal A; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.
  • Saygin H; Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul, Turkey.
  • Soyocak A; Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
Environ Toxicol ; 39(11): 4899-4926, 2024 Nov.
Article en En | MEDLINE | ID: mdl-38923375
ABSTRACT
The interaction between particles and proteins is a key factor determining the toxicity responses of particles. Therefore, this study aimed to examine the interaction between the emerging pollutant polyethylene terephthalate micro/nanoplastics from water bottles with bovine serum albumin. The physicochemical characteristics of micro/nanoplastics were investigated using nuclear magnetic resonance, x-ray diffraction, Fourier transform infrared, dynamic light scattering, and x-ray energy dispersive spectroscopy after exposure to various concentrations and durations of protein. Furthermore, the impact of protein-treated micro/nanoplastics on biological activities was examined using the mitochondrial activity and membrane integrity of A549 cells and the activity and biofilm production of Staphylococcus aureus. The structural characteristics of micro/nanoplastics revealed an interaction with protein. For instance, the assignment of protein-related new proton signals (e.g., CH2, methylene protons of CH2O), changes in available protons s (e.g., CH and CH3), crystallinity, functional groups, elemental ratios, zeta potentials (-11.3 ± 1.3 to -12.4 ± 1.7 to 25.5 ± 2.3 mV), and particle size (395 ± 76 to 496 ± 60 to 866 ± 82 nm) of micro/nanoplastics were significantly observed after protein treatment. In addition, the loading (0.012-0.027 mM) and releasing (0.008-0.013 mM) of protein also showed similar responses with structural characteristics. Moreover, the cell-based responses were changed regarding the structural and surface characteristics of micro/nanoplastics and the loading efficiencies of protein. For example, insignificant mitochondrial activity (2%-10%) and significant membrane integrity (12%-28%) of A549 cells increased compared with control, and reductions in bacterial activity (5%-40%) in many cases and biofilm production specifically at low dose of all treatment stages (13%-46% reduction) were observed.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Staphylococcus aureus / Tereftalatos Polietilenos Límite: Humans Idioma: En Revista: Environ Toxicol Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Turquía

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Staphylococcus aureus / Tereftalatos Polietilenos Límite: Humans Idioma: En Revista: Environ Toxicol Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Turquía