Your browser doesn't support javascript.
loading
Microbe-induced coordination of plant iron-sulfur metabolism enhances high-light-stress tolerance of Arabidopsis.
Shekhawat, Kirti; Veluchamy, Alaguraj; Fatima, Anam; García-Ramírez, Gabriel X; Reichheld, Jean-Philippe; Artyukh, Olga; Fröhlich, Katja; Polussa, Alexander; Parween, Sabiha; Nagarajan, Arun Prasanna; Rayapuram, Naganand; Hirt, Heribert.
Afiliación
  • Shekhawat K; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
  • Veluchamy A; Department of Computational Biology, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, TN 38105, USA.
  • Fatima A; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
  • García-Ramírez GX; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Reichheld JP; Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, 66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, 66860 Perpignan, France.
  • Artyukh O; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
  • Fröhlich K; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
  • Polussa A; The Forest School, Yale School of the Environment, Yale University, New Haven, CT 06520, USA.
  • Parween S; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
  • Nagarajan AP; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
  • Rayapuram N; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
  • Hirt H; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia. Electronic address: heribert.hirt@kaust.edu.sa.
Plant Commun ; : 101012, 2024 Jul 02.
Article en En | MEDLINE | ID: mdl-38956873
ABSTRACT
High-light stress strongly limits agricultural production in subtropical and tropical regions owing to photo-oxidative damage, decreased growth, and decreased yield. Here, we investigated whether beneficial microbes can protect plants under high-light stress. We found that Enterobacter sp. SA187 (SA187) supports the growth of Arabidopsis thaliana under high-light stress by reducing the accumulation of reactive oxygen species and maintaining photosynthesis. Under high-light stress, SA187 triggers dynamic changes in the expression of Arabidopsis genes related to fortified iron metabolism and redox regulation, thereby enhancing the antioxidative glutathione/glutaredoxin redox system of the plant. Genetic analysis showed that the enhancement of iron and sulfur metabolism by SA187 is coordinated by ethylene signaling. In summary, beneficial microbes could be an effective and inexpensive means of enhancing high-light-stress tolerance in plants.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Plant Commun Año: 2024 Tipo del documento: Article País de afiliación: Arabia Saudita

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Plant Commun Año: 2024 Tipo del documento: Article País de afiliación: Arabia Saudita