Your browser doesn't support javascript.
loading
DiffuseRT: predicting likely anatomical deformations of patients undergoing radiotherapy.
Smolders, A; Rivetti, L; Vatterodt, N; Korreman, S; Lomax, A; Sharma, M; Studen, A; Weber, D C; Jeraj, R; Albertini, F.
Afiliación
  • Smolders A; Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland.
  • Rivetti L; Department of Physics, ETH Zurich, Switzerland.
  • Vatterodt N; Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
  • Korreman S; Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
  • Lomax A; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  • Sharma M; Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
  • Studen A; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  • Weber DC; Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland.
  • Jeraj R; Department of Physics, ETH Zurich, Switzerland.
  • Albertini F; Department of Radiation Oncology, University of California, San Francisco, CA, United States of America.
Phys Med Biol ; 69(15)2024 Jul 22.
Article en En | MEDLINE | ID: mdl-38986481
ABSTRACT
Objective. Predicting potential deformations of patients can improve radiotherapy treatment planning. Here, we introduce new deep-learning models that predict likely anatomical changes during radiotherapy for head and neck cancer patients.Approach. Denoising diffusion probabilistic models (DDPMs) were developed to generate fraction-specific anatomical changes based on a reference cone-beam CT (CBCT), the fraction number and the dose distribution delivered. Three distinct DDPMs were developed (1) theimage modelwas trained to directly generate likely future CBCTs, (2) the deformable vector field (DVF) model was trained to generate DVFs that deform a reference CBCT and (3) thehybrid modelwas trained similarly to the DVF model, but without relying on an external deformable registration algorithm. The models were trained on 9 patients with longitudinal CBCT images (224 CBCTs) and evaluated on 5 patients (152 CBCTs).Results. The generated images mainly exhibited random positioning shifts and small anatomical changes for early fractions. For later fractions, all models predicted weight losses in accordance with the training data. The distributions of volume and position changes of the body, esophagus, and parotids generated with the image and hybrid models were more similar to the ground truth distribution than the DVF model, evident from the lower Wasserstein distance achieved with the image (0.33) and hybrid model (0.30) compared to the DVF model (0.36). Generating several images for the same fraction did not yield the expected variability since the ground truth anatomical changes were only in 76% of the fractions within the 95% bounds predicted with the best model. Using the generated images for robust optimization of simplified proton therapy plans improved the worst-case clinical target volume V95 with 7% compared to optimizing with 3 mm set-up robustness while maintaining a similar integral dose.Significance. The newly developed DDPMs generate distributions similar to the real anatomical changes and have the potential to be used for robust anatomical optimization.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Tomografía Computarizada de Haz Cónico / Neoplasias de Cabeza y Cuello Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Tomografía Computarizada de Haz Cónico / Neoplasias de Cabeza y Cuello Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2024 Tipo del documento: Article País de afiliación: Suiza